000 04290cam a22006618i 4500
001 ocn965446716
003 OCoLC
005 20220711203337.0
006 m o d
007 cr |||||||||||
008 161205s2017 si ob 001 0 eng
010 _a 2016056133
040 _aDLC
_beng
_erda
_cDLC
_dOCLCO
_dOCLCF
_dDG1
_dOCLCQ
_dN$T
_dYDX
_dIDEBK
_dEBLCP
020 _a9781119189053
_q(electronic bk.)
020 _a1119189055
_q(electronic bk.)
020 _z9781119189060
020 _z1119189063
020 _z9781119189077
020 _z1119189071
020 _z9781119189046
_q(hardback)
035 _a(OCoLC)965446716
042 _apcc
050 1 0 _aTJ217.5
072 7 _aTEC
_x009000
_2bisacsh
082 0 0 _a629.8/9
_223
084 _aTEC037000
_2bisacsh
049 _aMAIN
100 1 _aYang, Shiping,
_d1987-
_eauthor.
_96721
245 1 0 _aIterative learning control for multi-agent systems coordination /
_cby Shiping Yang, Jian-Xin Xu, Xuefang Li, Dong Shen.
263 _a1705
264 1 _aSingapore :
_bJohn Wiley & Sons, Inc.,
_c2017.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
520 _a"This book gives a comprehensive overview of the intersection between ILC and MAS, the range of topics include basic to advanced theories, rigorous mathematics to engineering practice, and linear to nonlinear systems. It addresses the crucial multi-agent coordination and control challenges that can be solved by ILC methods. Through systematic discussion of network theory and intelligent control, the authors explore future research possibilities, develop new tools, and provide numerous applications such as the power grid, communication and sensor networks, intelligent transportation system, and formation control. Readers will gain a roadmap to the latest advances in the fields and use their newfound knowledge to design their own algorithms"--
_cProvided by publisher.
505 0 _aOptimal Iterative Learning Control for Multi-agent Consensus Tracking -- Iterative Learning Control for Multi-agent Coordination Under Iteration-Varying Graph -- Iterative Learning Control for Multi-agent Coordination with Initial State Error -- Multi-agent Consensus Tracking with Input Sharing by Iterative Learning Control -- A HOIM-Based Iterative Learning Control Scheme for Multi-agent Formation -- P-type Iterative Learning for Non-parameterized Systems with Uncertain Local Lipschitz Terms -- Synchronization for Nonlinear Multi-agent Systems by Adaptive Iterative Learning Control -- Distributed Adaptive Iterative Learning Control for Nonlinear Multi-agent Systems with State Constraints -- Synchronization for Networked Lagrangian Systems under Directed Graphs -- Generalized Iterative Learning for Economic Dispatch Problem in a Smart Grid -- Summary and Future Research Directions -- Appendix A: Graph Theory Revisit -- Appendix B: Detailed Proofs.
504 _aIncludes bibliographical references and index.
588 0 _aPrint version record and CIP data provided by publisher; resource not viewed.
650 0 _aIntelligent control systems.
_93412
650 0 _aMultiagent systems.
_94974
650 0 _aMachine learning.
_91831
650 0 _aIterative methods (Mathematics)
_96722
650 7 _aTECHNOLOGY & ENGINEERING
_xRobotics.
_2bisacsh
_96723
650 7 _aIntelligent control systems.
_2fast
_0(OCoLC)fst00975911
_93412
650 7 _aIterative methods (Mathematics)
_2fast
_0(OCoLC)fst00980827
_96722
650 7 _aMachine learning.
_2fast
_0(OCoLC)fst01004795
_91831
650 7 _aMultiagent systems.
_2fast
_0(OCoLC)fst01749717
_94974
650 7 _aTECHNOLOGY & ENGINEERING / Engineering (General)
_2bisacsh
_96724
655 4 _aElectronic books.
_93294
700 1 _aXu, Jian-Xin,
_eauthor.
_96725
700 1 _aLi, Xuefang,
_d1985-
_eauthor.
_96726
700 1 _aShen, Dong,
_d1982-
_eauthor.
_96727
776 0 8 _iPrint version:
_aYang, Shiping, 1987- author.
_tIterative learning control for multi-agent systems coordination.
_dSingapore : John Wiley & Sons, Inc., 2017
_z9781119189046
_w(DLC) 2016052027
856 4 0 _uhttps://doi.org/10.1002/9781119189053
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c68728
_d68728