000 10266cam a2200589 i 4500
001 on1086507346
003 OCoLC
005 20220711203503.0
006 m o d
007 cr |||||||||||
008 190213t20202020nju ob 001 0 eng
010 _a 2019007370
040 _aDLC
_beng
_erda
_cDLC
_dOCLCO
_dOCLCF
_dYDX
_dEBLCP
_dYDX
_dN$T
_dDG1
_dUKMGB
_dOCLCQ
015 _aGBB9E4634
_2bnb
016 7 _a019501967
_2Uk
020 _a1119491592
_qelectronic book
020 _a9781119491606
_qelectronic book
020 _a1119491606
_qelectronic book
020 _a9781119491590
_q(electronic bk.)
020 _z9781119491583
_qhardcover
029 1 _aUKMGB
_b019501967
029 1 _aAU@
_b000065722308
035 _a(OCoLC)1086507346
037 _a9781119491606
_bWiley
042 _apcc
050 1 4 _aTK5103.25
_b.O68 2020
082 0 0 _a621.3845/6
_223
049 _aMAIN
245 0 0 _aOptical and wireless convergence for 5G networks /
_cedited by Abdelgader M Abdalla, Jonathan Rodriguez, Issa Elfergani, Antonio Teixeira.
264 1 _aHoboken, NJ, USA :
_bJohn Wiley & Sons, Inc.,
_c2020.
264 4 _c©2020
300 _a1 online resource (xli, 308 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
504 _aIncludes bibliographical references and index.
588 _aDescription based on online resource; title from digital title page (viewed on August 15, 2019).
505 0 _a<P>About the Editors ii</p> <p>Contributors v</p> <p>Preface xxvii</p> <p>Acknowledgments i</p> <p>Introduction iii</p> <p><b>1 Towards a Converged Optical-Wireless Fronthaul/Backhaul Solution for 5G Networks and Beyond 1<br /></b><i>Isiaka Ajewale Alimi, Nelson Jesus Muga, Abdelgader M. Abdalla, Catia Pinho, Jonathan Rodriguez, Paulo Pereira Monteiro, Antonio Lucios Teixeira</i></p> <p>1.1 Introduction 2</p> <p>1.2 Cellular Network Interface and Solution 3</p> <p>1.2.1 MBH/MFH Architecture 3</p> <p>1.2.2 Integrated MBH/MFH Transport Network 5</p> <p>1.3 5G Enabling Technologies 5</p> <p>1.3.1 Ultra-Densication 6</p> <p>1.3.2 C-RAN and RAN Virtualization 6</p> <p>1.3.3 Advanced radio coordination 8</p> <p>1.3.4 Millimeter-Wave Small Cells 9</p> <p>1.3.5 Massive MIMO 10</p> <p>1.3.6 New Multicarrier Modulations for 5G 10</p> <p>1.4 Fiber-Wireless Network Convergence 11</p> <p>1.5 Radio-over-Fiber Transmission Scheme 12</p> <p>1.5.1 Digital Radio-over-Fiber (D-RoF) Transmission 12</p> <p>1.5.2 Analog Radio-over-Fiber (A-RoF) Transmission 13</p> <p>1.6 Optical MBH/MFH Transport Network Multiplexing Schemes 14</p> <p>1.6.1 Wavelength-Division Multiplexing (WDM) based Schemes 14</p> <p>1.6.2 Spatial-Division Multiplexing (SDM) based Schemes 15</p> <p>1.7 Wireless based MFH/MBH 18</p> <p>1.7.1 FSO Communication Systems 18</p> <p>1.7.2 Hybrid RF/FSO Technology 21</p> <p>1.7.3 Relay-Assisted FSO Transmission 22</p> <p>1.8 Experimental Channel measurement and characterization 23</p> <p>1.9 Results and Discussions 24</p> <p>1.10 Conclusion 24</p> <p>Acknowledgments 24</p> <p>Bibliography 25</p> <p><b>2 Hybrid Fiber Wireless (HFW) Extension for GPON Toward 5G 31<br /></b><i>Rattana Chuenchom, Andreas Ste-an, Robert G. Walker, Stephen J. Clements, Yigal Leiba, Andrzej Banach, Mateusz Lech, Andreas Stohr</i></p> <p>2.1 Passive Optical Network 32</p> <p>2.1.1 GPON and EPON standard 33</p> <p>2.2 Transparent Wireless Extension of Optical Links 34</p> <p>2.2.1 Transparent wireless extension of optical links using CRoF 34</p> <p>2.3 Key Enabling Photonic and Electronic Technologies 36</p> <p>2.3.1 Coherent Photonic Mixer 36</p> <p>2.3.2 Single side band Mach-Zehnder modulator 38</p> <p>2.3.3 High power amplifier in E-band for GPON extension 40</p> <p>2.3.4 Integrated radio access units 42</p> <p>2.4 Field Trial for 2.5 Gbit/s GPON over Wireless 43</p> <p>2.4.1 RX Throughput and packet loss 48</p> <p>2.4.2 Latency 48</p> <p>2.4.3 Jitter 49</p> <p>2.5 Conclusions 49</p> <p>Bibliography 50</p> <p><b>3 Software Defened Networking and Network Function Virtualisation for Converged Accessmetro Networks 53<br /></b><i>Marco Rumi , Frank Slyne</i></p> <p>3.1 Introduction 53</p> <p>3.2 The 5G requirements driving network convergence and virtualisation 54</p> <p>3.3 Access and metro convergence 57</p> <p>3.3.1 Long-Reach Passive Optical Network 58</p> <p>3.3.2 New architectures in support of 5G networks, network virtualisation and mobile functional split 59</p> <p>3.4 Functional convergence and virtualisation of the central offices 62</p> <p>3.4.1 Infrastructure 63</p> <p>3.4.2 Management and Control 66</p> <p>3.4.3 Cross-Layer Components 70</p> <p>3.5 Conclusions 70</p> <p>Bibliography 70</p> <p><b>4 Multicore Fibres for 5G Fronthaul Evolution 77<br /></b><i>Ivana Gasulla, José Capmany</i></p> <p>4.1 Why 5G communications demand for optical Space-Division Multiplexing 77</p> <p>4.2 Multicore Fibre Transmission Review 79</p> <p>4.2.1 Homogeneous MCFs 80</p> <p>4.2.2 Heterogeneous MCFs 81</p> <p>4.3 Radio Access Networks using Multicore Fibre Links 82</p> <p>4.3.1 Basic MCF link between Central O-ce and Base Station 84</p> <p>4.3.2 MCF-based Radio over Fibre C-RAN 85</p> <p>4.3.3 MCF-based Digital Radio over Fibre C-RAN 87</p> <p>4.4 Microwave signal processing enabled by multicore fibres 88</p> <p>4.4.1 Signal Processing over a Heterogeneous MCF link 90</p> <p>4.4.2 RF Signal Processing over a Homogeneous MCF Multicavity device 92</p> <p>4.5 Final Remarks 94</p> <p>Bibliography 95</p> <p><b>5 Enabling VLC and Wi-Fi Network Technologies and Architectures Towards 5G 99<br /></b><i>Isiaka Ajewale Alimi, Abdelgader M. Abdalla, Jonathan Rodriguez, Paulo Pereira Monteiro, Antonio Lu -- s Teixeira, Stanislav Zv-anovec, Zabih Ghassemlooy</i></p> <p>5.1 Introduction 100</p> <p>5.2 Optical Wireless Systems 102</p> <p>5.3 Visible Light Communication (VLC) System Fundamentals 104</p> <p>5.4 VLC Current and Anticipated Future Applications 107</p> <p>5.4.1 Underwater Wireless Communications 109</p> <p>5.4.2 Airlines and Aviation 109</p> <p>5.4.3 Hospitals 110</p> <p>5.4.4 Vehicular Communication Systems 110</p> <p>5.4.5 Sensitive Areas 111</p> <p>5.4.6 Manufacturing and Industrial Applications 111</p> <p>5.4.7 Retail Stores 112</p> <p>5.4.8 Consumer Electronics 112</p> <p>5.4.9 Internet of Things 112</p> <p>5.4.10 Other Application Areas 113</p> <p>5.5 Hybrid VLC and RF Networks 113</p> <p>5.6 Challenges and Open-Ended Issues 114</p> <p>5.6.1 Flicker and Dimming 115</p> <p>5.6.2 Data Rate Improvement 115</p> <p>5.7 Conclusions 116</p> <p>Acknowledgments 116</p> <p>Bibliography 117</p> <p><b>6 5G RAN: Key Radio Technologies and Hardware Implementation Challenges 123<br /></b><i>Hassan Hamdoun, Mohamed Hamid, Shoaib Amin, Hind Dafallah</i></p> <p>6.1 Introduction 123</p> <p>6.2 5G NR-enabled Use Cases 124</p> <p>6.2.1 eMBB and uRLLC 125</p> <p>6.2.2 Migration to 5G 126</p> <p>6.3 5G RAN Radio-enabling Technologies 126</p> <p>6.3.1 Massive MIMO (M-MIMO) 127</p> <p>6.3.2 Carrier Aggregation and Licensed Assisted Access to unlicensed spectrum 130</p> <p>6.3.3 Dual Connectivity 131</p> <p>6.3.4 Device-to-Device (D2D) communication 132</p> <p>6.4 Hardware Impairments 132</p> <p>6.4.1 Hardware Impairments-Transmitters 133</p> <p>6.4.2 Hardware Impairments -- Receivers 135</p> <p>6.4.3 Hardware Impairments -- Transceivers 135</p> <p>6.5 Technology and Fabrication challenges 136</p> <p>6.6 Conclusion 137</p> <p>Bibliography 137</p> <p><b>7 Millimeter Wave Antenna Design for 5G Applications 143<br /></b><i>Issa Elfergani, Abubakar Sadiq Hussaini, Abdelgader Abdalla, Jonathan Rodriguez, Raed Abd-Alhameed</i></p> <p>7.1 Introduction 144</p> <p>7.2 Antenna Design and Procedure 146</p> <p>7.3 Antenna Optimisation and Analysis 147</p> <p>7.3.1 The inuence of ground plane length (GL) 148</p> <p>7.3.2 The effect of feeding strip position (Fp) 148</p> <p>7.3.3 The inuences of the substrate type 149</p> <p>7.4 MMwave Antenna Design with notched frequency band 150</p> <p>7.5 MMwave Antenna Design with Loaded Capacitor 153</p> <p>7.6 Conclusion 156</p> <p>Acknowledgement 156</p> <p>Bibliography 156</p> <p><b>8 Wireless Signal Encapsulation on Seamless Fiber{mmWave System 161<br /></b><i>Pham Tien Dat, Atsushi Kanno, Naokatsu Yamamoto, Testuya Kawanishi</i></p> <p>8.1 Introduction 161</p> <p>8.2 Principle of signal encapsulation 163</p> <p>8.2.1 Downlink system 163</p> <p>8.2.2 Uplink system 165</p> <p>8.3 Examples of signal encapsulation 166</p> <p>8.3.1 Downlink transmission 166</p> <p>8.3.2 Uplink transmission 170</p> <p>8.3.3 MmWave link distance 173</p> <p>8.3.4 Conclusion 175</p> <p>Bibliography 176</p> <p><b>9 5G Optical Sensing Technologies 179<br /></b><i>Seedahmed S. Mahmoud , Bernhard Koziol, Jusak Jusak</i></p> <p>9.1 Introduction 179</p> <p>9.2 Optical Fibre Communication Network: Intrusion Methods 182</p> <p>9.3 Physical Protection of Optical Fibre Communication Cables 183</p> <p>9.3.1 Location-Based Optical Fibre Sensors 185</p> <p>9.3.2 Point-Based Optical Fibre Sensors 187</p> <p>9.3.3 Zone-Based Optical Fibre Sensors 189</p> <p>9.4 Design Consideration and Performance Characteristics 190</p> <p>9.4.1 Performance Parameters 190</p> <p>9.4.2 The Needs for Robust Signal Processing Methods 191</p> <p>9.4.3 System Installation and Technology Suitability 192</p> <p>9.5 Conclusions 193</p> <p>Bibliography 193</p> <p><b>10 T
650 0 _aMobile communication systems.
_94051
650 0 _aOptical communications
_xTechnological innovations.
_98139
650 7 _aMobile communication systems.
_2fast
_0(OCoLC)fst01024207
_94051
650 7 _aOptical communications
_xTechnological innovations.
_2fast
_0(OCoLC)fst01046671
_98139
655 4 _aElectronic books.
_93294
700 1 _aAbdalla, Abdelgader M.,
_d1970-
_eeditor.
_98140
700 1 _aRodriguez, Jonathan,
_eeditor.
_98141
700 1 _aElfergani, Issa,
_eeditor.
_98142
700 1 _aTeixeira, António,
_eeditor.
_98143
776 0 8 _iPrint version:
_tOptical and wireless convergence for 5G networks
_dHoboken, NJ, USA : John Wiley & Sons, Inc., [2019]
_z9781119491583
_w(DLC) 2019003146
856 4 0 _uhttps://doi.org/10.1002/9781119491590
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c69028
_d69028