000 03393cam a2200577 i 4500
001 on1152356623
003 OCoLC
005 20220711203626.0
006 m o d
007 cr |||||||||||
008 200331t20212021njua ob 001 0 eng
010 _a 2020015367
040 _aDLC
_beng
_erda
_cDLC
_dOCLCO
_dOCLCQ
_dOCLCF
_dOCLCA
_dYDX
_dUKMGB
_dDG1
_dOCLCO
_dN$T
_dYDX
_dDG1
015 _aGBC0D9722
_2bnb
016 7 _a019938838
_2Uk
020 _a9781119625384
_qelectronic book
020 _a1119625386
_qelectronic book
020 _a9781119625377
_qelectronic book
020 _a1119625378
_qelectronic book
020 _a9781119625360
_qelectronic book
020 _a111962536X
_qelectronic book
020 _z9781119625278
_qhardcover
029 1 _aUKMGB
_b019938838
035 _a(OCoLC)1152356623
037 _a9781119625377
_bWiley
042 _apcc
050 0 4 _aP98
_b.D35 2021
082 0 0 _a410.1/5195
_223
049 _aMAIN
100 1 _aDębowski, Łukasz Jerzy,
_d1975-
_eauthor.
_99413
245 1 0 _aInformation theory meets power laws :
_bstochastic processes and language models /
_cŁukasz Dębowski, Polish Academy of Sciences.
264 1 _aHoboken, NJ :
_bJohn Wiley & Sons, Inc.,
_c2021.
264 4 _c©2021
300 _a1 online resource (xvi, 368 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
504 _aIncludes bibliographical references and index.
520 _a"This book introduces mathematical foundations of statistical modeling of natural language. The author attempts to explain a few statistical power laws satisfied by texts in natural language in terms of non-Markovian and non-hidden Markovian discrete stochastic processes with some sort of long-range dependence. To achieve this, he uses various concepts and technical tools from information theory and probability measures. This book begins with an introduction. The first half of the book is an introduction to probability measures, information theory, ergodic decomposition, and Kolmogorov complexity, which is provided to make the book relatively self-contained. This section also covers less standard concepts and results, such as excess entropy and generalization of conditional mutual information to fields. The second part of the book discusses the results concerning power laws for mutual information and maximal repetition, such as theorems about facts and words. There is also a separate chapter discussing toy examples of stochastic processes, which should inspire future work in statistical language modeling"--
_cProvided by publisher.
588 _aDescription based on online resource; title from digital title page (viewed on January 27, 2021).
590 _bWiley Frontlist Obook All English 2020
650 0 _aComputational linguistics.
_96146
650 0 _aStochastic processes.
_93246
650 7 _aComputational linguistics.
_2fast
_0(OCoLC)fst00871998
_96146
650 7 _aStochastic processes.
_2fast
_0(OCoLC)fst01133519
_93246
655 4 _aElectronic books.
_93294
776 0 8 _iPrint version:
_aDębowski, Łukasz Jerzy, 1975-
_tInformation theory meets power laws
_dHoboken : Wiley, 2020.
_z9781119625278
_w(DLC) 2020015366
856 4 0 _uhttps://doi.org/10.1002/9781119625384
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c69388
_d69388