000 03900cam a22006498i 4500
001 on1178869780
003 OCoLC
005 20220711203628.0
006 m d u
007 cr |||||||||||
008 200618s2021 nju ob 001 0 eng
010 _a 2020027877
040 _aDLC
_beng
_erda
_cDLC
_dOCLCO
_dOCLCF
_dYDX
_dDG1
_dOCLCO
020 _a9781119606383
_q(electronic bk. : oBook)
020 _a1119606381
_q(electronic bk. : oBook)
020 _a9781119606352
_q(epub)
020 _a1119606357
_q(epub)
020 _a9781119606079
_q(adobe pdf)
020 _a1119606071
_q(adobe pdf)
020 _z9781119606031
_q(cloth)
029 1 _aAU@
_b000067575294
035 _a(OCoLC)1178869780
042 _apcc
050 0 0 _aTJ222
082 0 0 _a629.8/95583
_223
049 _aMAIN
100 1 _aAlmalawi, Abdulmohsen,
_eauthor.
_99442
245 1 0 _aSCADA security :
_bmachine learning concepts for intrusion detection and prevention /
_cAbdulmohsen Almalawi, King Abdulaziz University, Zahir Tari, RMIT University, Adil Fahad, Al Baha University, Xun Yi, Royal Melbourne Institute of Technology.
263 _a2108
264 1 _aHoboken, NJ, USA :
_bWiley,
_c2021.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
490 1 _aWiley series on parallel and distributed computing
505 0 _aIntroduction -- Background -- SCADA-Based Security Testbed -- Efficient k-Nearest Neighbour Approach Based on Various-Widths Clustering -- SCADA Data-Driven Anomaly Detection -- A Global Anomaly Threshold to Unsupervised Detection -- Threshold Password-Authenticated Secret Sharing Protocols -- Conclusion.
504 _aIncludes bibliographical references and index.
520 _a"This book provides insights into issues of SCADA security. Chapter 1 discusses how potential attacks against traditional IT can also be possible against SCADA systems. Chapter 2 gives background information on SCADA systems, their architectures, and main components. In Chapter 3, the authors describe SCADAVT, a framework for a SCADA security testbed based on virtualization technology. Chapter 4 introduces an approach called kNNVWC to find the k-nearest neighbours in large and high dimensional data. Chapter 5 describes an approach called SDAD to extract proximity-based detection rules, from unlabelled SCADA data, based on a clustering-based technique. In Chapter 6, the authors explore an approach called GATUD which finds a global and efficient anomaly threshold. The book concludes with a summary of the contributions made by this book to the extant body of research, and suggests possible directions for future research"--
_cProvided by publisher.
588 _aDescription based on print version record and CIP data provided by publisher; resource not viewed.
590 _bWiley Frontlist Obook All English 2020
650 0 _aSupervisory control systems.
_99443
650 0 _aAutomatic control
_xSecurity measures.
_99444
650 0 _aIntrusion detection systems (Computer security)
_99445
650 0 _aMachine learning.
_91831
650 7 _aIntrusion detection systems (Computer security)
_2fast
_0(OCoLC)fst01762593
_99445
650 7 _aMachine learning
_2fast
_0(OCoLC)fst01004795
_91831
650 7 _aSupervisory control systems
_2fast
_0(OCoLC)fst01139089
_99443
655 4 _aElectronic books.
_93294
700 1 _aTari, Zahir,
_eauthor.
_99446
700 1 _aFahad, Adil,
_eauthor.
_99447
700 1 _aYi, Xun,
_eauthor.
_99448
776 0 8 _iPrint version:
_aAlmalawi, Abdulmohsen.
_tSCADA security
_dHoboken, NJ, USA : Wiley, 2021.
_z9781119606031
_w(DLC) 2020027876
830 0 _aWiley series on parallel and distributed computing.
_94669
856 4 0 _uhttps://doi.org/10.1002/9781119606383
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c69399
_d69399