000 | 05854cam a2200673Ii 4500 | ||
---|---|---|---|
001 | 9781315177304 | ||
003 | FlBoTFG | ||
005 | 20220711212151.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 200915t20212021flua ob 001 0 eng d | ||
040 |
_aOCoLC-P _beng _erda _cOCoLC-P |
||
020 |
_a9781351709996 _qelectronic book |
||
020 |
_a1351709992 _qelectronic book |
||
020 |
_a9781351709989 _qelectronic publication |
||
020 |
_a1351709984 _qelectronic publication |
||
020 |
_a9781351709972 _qMobipocket electronic book |
||
020 |
_a1351709976 _qMobipocket electronic book |
||
020 |
_a9781315177304 _qelectronic book |
||
020 |
_a1315177307 _qelectronic book |
||
020 | _z9781138038554 | ||
020 | _z1138038555 | ||
020 | _z9780367565121 | ||
024 | 7 |
_a10.1201/9781315177304 _2doi |
|
035 |
_a(OCoLC)1195455307 _z(OCoLC)1195437191 _z(OCoLC)1203956294 _z(OCoLC)1226072475 |
||
035 | _a(OCoLC-P)1195455307 | ||
050 | 4 |
_aTA1637 _b.I475 2021 |
|
072 | 7 |
_aCOM _x012000 _2bisacsh |
|
072 | 7 |
_aSCI _x011000 _2bisacsh |
|
072 | 7 |
_aSCI _x086000 _2bisacsh |
|
072 | 7 |
_aTVB _2bicssc |
|
082 | 0 | 4 |
_a576.5/30285642 _223 |
245 | 0 | 0 |
_aIntelligent image analysis for plant phenotyping / _cedited by Ashok Samal and Sruti Das Choudhury. |
250 | _aFirst edition. | ||
264 | 1 |
_aBoca Raton, FL : _bCRC Press, _c2021. |
|
264 | 4 | _c©2021 | |
300 | _a1 online resource (xix, 326 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
505 | 0 | _aCover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Part I Basics -- Chapter 1 Image-Based Plant Phenotyping: Opportunities and Challenges -- 1.1 Introduction -- 1.2 Importance of Phenotyping Research -- 1.3 Plant Phenotyping Analysis Framework -- 1.4 Plant Phenotyping Networks -- 1.5 Opportunities and Challenges Associated with High-Throughput Image-Based Phenotyping -- 1.6 Image-Based Plant Phenotyping Analysis -- 1.7 Data Management for Plant Phenotyping | |
505 | 8 | _a1.8 Computational Challenges in Image-Based Plant Phenotyping -- 1.8.1 Computational Resources -- 1.8.2 Algorithm Robustness -- 1.8.3 Inference from Incomplete Information -- 1.8.4 Large Phenotype Search Space -- 1.8.5 Analysis of Image Sequences -- 1.8.6 Lack of Benchmark Datasets -- 1.9 Looking into the Future -- 1.9.1 Imaging Platforms -- 1.9.2 Integrated Phenotypes -- 1.9.3 Learning-Based Approaches -- 1.9.4 Shape Modeling and Simulation for Phenotyping -- 1.9.5 Event-Based Phenotypes -- 1.10 Summary -- References -- Chapter 2 Multisensor Phenotyping for Crop Physiology | |
505 | 8 | _a2.1 Crop Phenotyping -- 2.1.1 Breeding for Crop Performance and Yield -- 2.1.2 Purpose of Phenotypic Image Analysis -- 2.1.3 Intelligent Image Analysis -- 2.1.4 Critical Traits for Seed Crop Improvement -- 2.2 Cameras and Sensors for Crop Measurements -- 2.2.1 RGB Imaging -- 2.2.1.1 Greenhouse Parameters Recorded with RGB Cameras -- 2.2.1.2 Field Parameters -- 2.2.2 3D Laser Imaging -- 2.2.2.1 Greenhouse Parameters Recorded with Laser Scanners -- 2.2.2.2 Field Parameters Recorded with Laser Scanners -- 2.2.3 Fluorescence Imaging -- 2.2.3.1 Greenhouse Parameters -- 2.2.3.2 Field Parameters | |
505 | 8 | _a2.3 Conclusions -- Acknowledgment -- References -- Chapter 3 Image Processing Techniques for Plant Phenotyping -- 3.1 Introduction -- 3.2 Goals of Plant Phenotyping -- 3.3 Background and Literature Survey -- 3.4 Image-Processing Methodology -- 3.5 Image Acquisition/Imaging Basics -- 3.5.1 Image Data Structures -- 3.5.2 Visible Light Images -- 3.5.3 Infrared Images -- 3.5.4 Hyperspectral and Multispectral Images -- 3.5.5 Fluorescent Images -- 3.6 Basic Image-Processing Operations -- 3.6.1 Grayscale Conversion -- 3.6.2 Histogram Processing -- 3.6.3 Thresholding -- 3.6.4 Edge Detection | |
505 | 8 | _a3.6.5 Image Transformations -- 3.6.6 Segmentation -- 3.6.6.1 Frame Difference Segmentation -- 3.6.6.2 Color-Based Segmentation -- 3.6.7 Morphological Operations -- 3.6.7.1 Dilation and Erosion -- 3.6.7.2 Opening and Closing -- 3.6.8 Thinning -- 3.6.9 Connected Component Analysis -- 3.6.10 Skeletonization -- 3.6.10.1 Graphical Representation -- 3.7 Feature Computation -- 3.7.1 Basic Shape Properties -- 3.7.1.1 Length -- 3.7.1.2 Area -- 3.7.1.3 Bounding Box -- 3.7.1.4 Aspect Ratio -- 3.7.1.5 Convex Hull -- 3.7.1.6 Circularity -- 3.7.1.7 Straightness -- 3.7.2 Color Properties | |
520 |
_a"Domesticated crops are the result of artificial selection for particular phenotypes and, in some case, natural selection for an adaptive trait. Intelligent Image Analysis for Plant Phenotyping reviews information on time-saving techniques using computer vision and imaging technologies. These methodologies provide an automated, non-invasive and scalable mechanism to define and collect plant phenotypes. Beautifully illustrated with numerous color images, this book is invaluable for those working in the emerging fields at the intersection of computer vision and plant sciences"-- _cProvided by publisher. |
||
588 | _aOCLC-licensed vendor bibliographic record. | ||
650 | 0 |
_aImage processing _xDigital techniques. _94145 |
|
650 | 0 |
_aComputer vision. _913839 |
|
650 | 0 |
_aPhenotype. _913840 |
|
650 | 7 |
_aCOMPUTERS / Computer Graphics / General _2bisacsh _912490 |
|
650 | 7 |
_aSCIENCE / Life Sciences / Botany _2bisacsh _910964 |
|
650 | 7 |
_aSCIENCE / Life Sciences / General _2bisacsh _913841 |
|
700 | 1 |
_aSamal, Ashok, _eeditor. _913842 |
|
700 | 1 |
_aChoudhury, Sruti Das, _eeditor. _913843 |
|
856 | 4 | 0 |
_3Taylor & Francis _uhttps://www.taylorfrancis.com/books/9781315177304 |
856 | 4 | 2 |
_3OCLC metadata license agreement _uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf |
942 | _cEBK | ||
999 |
_c70536 _d70536 |