000 | 03628cam a22005658i 4500 | ||
---|---|---|---|
001 | 9781003190554 | ||
003 | FlBoTFG | ||
005 | 20220711212505.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 210317s2022 flu ob 001 0 eng | ||
040 |
_aOCoLC-P _beng _erda _cOCoLC-P |
||
020 |
_a9781003190554 _q(ebook) |
||
020 | _a1003190553 | ||
020 |
_a9781000438451 _q(electronic bk. : EPUB) |
||
020 |
_a1000438457 _q(electronic bk. : EPUB) |
||
020 |
_a9781000438314 _q(electronic bk. : PDF) |
||
020 |
_a1000438317 _q(electronic bk. : PDF) |
||
020 |
_z9781032041018 _q(hardback) |
||
020 |
_z9781032041032 _q(paperback) |
||
035 | _a(OCoLC)1245248985 | ||
035 | _a(OCoLC-P)1245248985 | ||
050 | 0 | 0 | _aQA76.9.I52 |
072 | 7 |
_aBUS _x061000 _2bisacsh |
|
072 | 7 |
_aCOM _x021030 _2bisacsh |
|
072 | 7 |
_aCOM _x037000 _2bisacsh |
|
072 | 7 |
_aUN _2bicssc |
|
082 | 0 | 0 |
_a001.4/226 _223 |
100 | 1 |
_aTripathy, B. K., _d1957- _eauthor. _916981 |
|
245 | 1 | 0 |
_aUnsupervised learning approaches for dimensionality reduction and data visualization / _cB.K. Tripathy, Anveshrithaa S, Shrusti Ghela. |
250 | _aFirst edition. | ||
264 | 1 |
_aBoca Raton : _bCRC Press Book, _c2022. |
|
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
520 |
_a"This book describes algorithms like Locally Linear Embedding (LLE), Laplacian eigenmaps, Isomap, Semidefinite Embedding, t-SNE to resolve the problem of dimensionality reduction in the case of non-linear relationships within the data. Underlying mathematical concepts, derivations, and proofs with logical explanations for these algorithms are discussed including strengths and the limitations. It highlights important use cases of these algorithms and few examples along with visualizations. Comparative study of the algorithms is presented, to give a clear idea on selecting the best suitable algorithm for a given dataset for efficient dimensionality reduction and data visualization. Features: Demonstrates how unsupervised learning approaches can be used for dimensionality reduction. Neatly explains algorithms with focus on the fundamentals and underlying mathematical concepts. Describes the comparative study of the algorithms and discusses when and where each algorithm is best suitable for use. Provides use cases, illustrative examples, and visualizations of each algorithm. Helps visualize and create compact representations of high dimensional and intricate data for various real-world applications and data analysis. This book aims at professionals, graduate students and researchers in Computer Science and Engineering, Data Science, Machine Learning, Computer Vision, Data Mining, Deep Learning, Sensor Data Filtering, Feature Extraction for Control Systems, and Medical Instruments Input Extraction"-- _cProvided by publisher. |
||
588 | _aOCLC-licensed vendor bibliographic record. | ||
650 | 0 |
_aInformation visualization. _914255 |
|
650 | 0 |
_aData reduction. _916982 |
|
650 | 0 |
_aMachine learning. _91831 |
|
650 | 7 |
_aBUSINESS & ECONOMICS / Statistics _2bisacsh _915543 |
|
650 | 7 |
_aCOMPUTERS / Database Management / Data Mining _2bisacsh _912290 |
|
650 | 7 |
_aCOMPUTERS / Machine Theory _2bisacsh _916983 |
|
700 | 1 |
_aS., Anveshrithaa, _eauthor. _916984 |
|
700 | 1 |
_aGhela, Shrusti, _eauthor. _916985 |
|
856 | 4 | 0 |
_3Taylor & Francis _uhttps://www.taylorfrancis.com/books/9781003190554 |
856 | 4 | 2 |
_3OCLC metadata license agreement _uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf |
942 | _cEBK | ||
999 |
_c71394 _d71394 |