000 03628cam a22005658i 4500
001 9781003190554
003 FlBoTFG
005 20220711212505.0
006 m o d
007 cr |||||||||||
008 210317s2022 flu ob 001 0 eng
040 _aOCoLC-P
_beng
_erda
_cOCoLC-P
020 _a9781003190554
_q(ebook)
020 _a1003190553
020 _a9781000438451
_q(electronic bk. : EPUB)
020 _a1000438457
_q(electronic bk. : EPUB)
020 _a9781000438314
_q(electronic bk. : PDF)
020 _a1000438317
_q(electronic bk. : PDF)
020 _z9781032041018
_q(hardback)
020 _z9781032041032
_q(paperback)
035 _a(OCoLC)1245248985
035 _a(OCoLC-P)1245248985
050 0 0 _aQA76.9.I52
072 7 _aBUS
_x061000
_2bisacsh
072 7 _aCOM
_x021030
_2bisacsh
072 7 _aCOM
_x037000
_2bisacsh
072 7 _aUN
_2bicssc
082 0 0 _a001.4/226
_223
100 1 _aTripathy, B. K.,
_d1957-
_eauthor.
_916981
245 1 0 _aUnsupervised learning approaches for dimensionality reduction and data visualization /
_cB.K. Tripathy, Anveshrithaa S, Shrusti Ghela.
250 _aFirst edition.
264 1 _aBoca Raton :
_bCRC Press Book,
_c2022.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
520 _a"This book describes algorithms like Locally Linear Embedding (LLE), Laplacian eigenmaps, Isomap, Semidefinite Embedding, t-SNE to resolve the problem of dimensionality reduction in the case of non-linear relationships within the data. Underlying mathematical concepts, derivations, and proofs with logical explanations for these algorithms are discussed including strengths and the limitations. It highlights important use cases of these algorithms and few examples along with visualizations. Comparative study of the algorithms is presented, to give a clear idea on selecting the best suitable algorithm for a given dataset for efficient dimensionality reduction and data visualization. Features: Demonstrates how unsupervised learning approaches can be used for dimensionality reduction. Neatly explains algorithms with focus on the fundamentals and underlying mathematical concepts. Describes the comparative study of the algorithms and discusses when and where each algorithm is best suitable for use. Provides use cases, illustrative examples, and visualizations of each algorithm. Helps visualize and create compact representations of high dimensional and intricate data for various real-world applications and data analysis. This book aims at professionals, graduate students and researchers in Computer Science and Engineering, Data Science, Machine Learning, Computer Vision, Data Mining, Deep Learning, Sensor Data Filtering, Feature Extraction for Control Systems, and Medical Instruments Input Extraction"--
_cProvided by publisher.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aInformation visualization.
_914255
650 0 _aData reduction.
_916982
650 0 _aMachine learning.
_91831
650 7 _aBUSINESS & ECONOMICS / Statistics
_2bisacsh
_915543
650 7 _aCOMPUTERS / Database Management / Data Mining
_2bisacsh
_912290
650 7 _aCOMPUTERS / Machine Theory
_2bisacsh
_916983
700 1 _aS., Anveshrithaa,
_eauthor.
_916984
700 1 _aGhela, Shrusti,
_eauthor.
_916985
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781003190554
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
942 _cEBK
999 _c71394
_d71394