000 05977cam a22005418i 4500
001 9781351215183
003 FlBoTFG
005 20220711212626.0
006 m o d
007 cr |||||||||||
008 181009s2019 flu ob 001 0 eng
040 _aOCoLC-P
_beng
_erda
_cOCoLC-P
020 _a9781351215169
_q(ePub)
020 _a1351215167
020 _a9781351215152
_q(Mobipocket)
020 _a1351215159
020 _a9781351215176
_q( Adobe PDF)
020 _a1351215175
020 _z9780815379133 (hardback)
020 _a9781351215183
_q(electronic bk.)
020 _a1351215183
_q(electronic bk.)
035 _a(OCoLC)1057238485
_z(OCoLC)1097665031
_z(OCoLC)1097985983
035 _a(OCoLC-P)1057238485
050 1 0 _aTA710
072 7 _aTEC
_x009020
_2bisacsh
072 7 _aTN
_2bicssc
082 0 0 _a624.1/5136
_223
100 1 _aDas, Braja M.,
_d1941-
_eauthor.
_918234
245 1 0 _aAdvanced soil mechanics /
_cBraja Das.
250 _a5th edition.
264 1 _aBoca Raton :
_bTaylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc,
_c[2019]
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
505 0 _aCover; Half Title; Title Page; Copyright Page; Dedication; Contents; Preface; Acknowledgments; Author; 1. Soil aggregate, plasticity, and classification; 1.1 Introduction; 1.2 Soil: separate size limits; 1.3 Clay minerals; 1.4 Nature of water in clay; 1.5 Repulsive potential; 1.6 Repulsive pressure; 1.7 Flocculation and dispersion of clay particles; 1.7.1 Salt flocculation and nonsalt flocculation; 1.8 Consistency of cohesive soils; 1.8.1 Liquid limit; 1.8.2 Plastic limit; 1.9 Liquidity index; 1.10 Activity; 1.11 Grain-size distribution of soil; 1.12 Weight-volume relationships
505 8 _a1.13 Relative density and relative compaction1.13.1 Correlations for relative density of granular soil; 1.14 Relationship between emax AND emin; 1.14.1 Effect of nonplastic fines on emax and emin; 1.15 Soil classification systems; 1.15.1 Unified system; 1.15.2 AASHTO classification system; 1.16 Compaction; 1.16.1 Standard Proctor compaction test; 1.16.2 Modified Proctor compaction test; 1.17 Empirical relationships for proctor compaction tests; References; 2. Stresses and strains: Elastic equilibrium; 2.1 Introduction; 2.2 Basic definition and sign conventions for stresses
505 8 _a2.3 Equations of static equilibrium2.4 Concept of strain; 2.5 Hooke's law; 2.6 Plane strain problems; 2.6.1 Compatibility equation; 2.6.2 Stress function; 2.6.3 Compatibility equation in polar coordinates; 2.7 Equations of compatibility for three-dimensional problems; 2.8 Stresses on an inclined plane and principal stresses for plane strain problems; 2.8.1 Transformation of stress components from polar to Cartesian coordinate system; 2.8.2 Principal stress; 2.8.3 Mohr's circle for stresses; 2.8.4 Pole method for finding stresses on an inclined plane
505 8 _a2.9 Strains on an inclined plane and principal strain for plane strain problems2.10 Stress components on an inclined plane, principal stress, and octahedral stresses: Three-Dimensional Case; 2.10.1 Stress on an inclined plane; 2.10.2 Transformation of axes; 2.10.3 Principal stresses; 2.10.4 Octahedral stresses; 2.11 Strain components on an inclined plane, principal strain, and octahedral strain: three-dimensional case; 3. Stresses and displacements In a soil mass: Two-dimensional problems; 3.1 Introduction; 3.2 Vertical line load on the surface; 3.2.1 Displacement on the surface (z = 0)
505 8 _a3.3 Vertical line load at the apex of an infinite wedge3.4 Vertical line load on the surface of a finite layer; 3.5 Vertical line load inside a semi-infinite mass; 3.6 Horizontal line load on the surface; 3.7 Horizontal and inclined line load at the apex of an infinite wedge; 3.8 Horizontal line load inside a semi-infinite mass; 3.9 Uniform vertical loading on an infinite strip on the surface; 3.9.1 Vertical displacement at the surface (z = 0); 3.10 Uniform strip load inside a semi-infinite mass; 3.11 Uniform horizontal loading on an infinite strip on the surface
520 _aNow in its fifth edition, this classic textbook continues to offer a well-tailored resource for beginning graduate students in geotechnical engineering. Further developing the basic concepts from undergraduate study, it provides a solid foundation for advanced study. This new edition addresses a variety of recent advances in the field and each section is updated. Braja Das particularly expands the content on consolidation, shear strength of soils, and both elastic and consolidation settlements of shallow foundations to accommodate modern developments. New material includes: Recently published correlations of maximum dry density and optimum moisture content of compaction Recent methods for determination of preconsolidation pressure A new correlation for recompression index Different approaches to estimating the degree of consolidation A discussion on the relevance of laboratory strength tests to field conditions Several new example problems This text can be followed by advanced courses dedicated to topics such as mechanical and chemical stabilization of soils, geo-environmental engineering, critical state soil mechanics, geosynthetics, rock mechanics, and earthquake engineering. It can also be used as a reference by practical consultants.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aSoil mechanics
_vTextbooks.
_918235
650 7 _aTECHNOLOGY & ENGINEERING / Civil / General.
_2bisacsh
_918236
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781351215183
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
942 _cEBK
999 _c71747
_d71747