000 02195nam a2200421 a 4500
001 00012132
003 WSP
005 20220711214212.0
007 cr |nu|||unuuu
008 210803s2021 si ob 001 0 eng d
010 _a 2021038221
040 _aWSPC
_beng
_cWSPC
020 _a9789811231254
_q(ebook)
020 _a9811231257
_q(ebook)
020 _z9789811231247
_q(hbk.)
020 _z9811231249
_q(hbk.)
020 _z9789811232855
_q(pbk.)
020 _z9811232857
_q(pbk.)
050 4 _aQA612
_b.M5215 2021
072 7 _aMAT
_x012010
_2bisacsh
072 7 _aMAT
_x012000
_2bisacsh
072 7 _aMAT
_x038000
_2bisacsh
082 0 4 _a514/.2
_223
049 _aMAIN
100 1 _aMiller, Haynes R.,
_d1948-
_921167
245 1 0 _aLectures on algebraic topology
_h[electronic resource] /
_cHaynes Miller.
260 _aSingapore :
_bWorld Scientific,
_c2021.
300 _a1 online resource (404 p.)
504 _aIncludes bibliographical references and index.
505 0 _aSingular homology -- Computational methods -- Cohomology and duality -- Basic homotopy theory -- The homotopy theory of CW complexes -- Vector bundles and principal bundles -- Spectral sequences and Serre classes -- Characteristic classes, Steenrod operations, and cobordism.
520 _a"Algebraic Topology and basic homotopy theory form a fundamental building block for much of modern mathematics. These lecture notes represent a culmination of many years of leading a two-semester course in this subject at MIT. The style is engaging and student-friendly, but precise. Every lecture is accompanied by exercises. It begins slowly in order to gather up students with a variety of backgrounds, but gains pace as the course progresses, and by the end the student has a command of all the basic techniques of classical homotopy theory"--
_cPublisher's website.
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader.
650 0 _aAlgebraic topology.
_911378
655 0 _aElectronic books.
_93294
856 4 0 _uhttps://www.worldscientific.com/worldscibooks/10.1142/12132#t=toc
_zAccess to full text is restricted to subscribers.
942 _cEBK
999 _c72755
_d72755