000 03166nam a2200529 i 4500
001 6276852
003 IEEE
005 20220712204750.0
006 m o d
007 cr |n|||||||||
008 151229s2001 maua ob 001 eng d
010 _z 2001030212 (print)
020 _a9780262291200
_qelectronic
020 _z9780262600422
_qprint
020 _z0262600420
_qpbk. : alk. paper
035 _a(CaBNVSL)mat06276852
035 _a(IDAMS)0b000064818c1f8f
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQA76.87
_b.G72 2001eb
082 0 0 _a006.3/2
_221
245 0 0 _aGraphical models :
_bfoundations of neural computation /
_cedited by Michael I. Jordan and Terrence J. Sejnowski.
264 1 _aCambridge, Massachusetts :
_bMIT Press,
_cc2001.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2001]
300 _a1 PDF (xxiv, 421 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aComputational neuroscience
500 _a"A Bradford book."
500 _aIncludes bibliographical references and index.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aGraphical models use graphs to represent and manipulate joint probability distributions. They have their roots in artificial intelligence, statistics, and neural networks. The clean mathematical formalism of the graphical models framework makes it possible to understand a wide variety of network-based approaches to computation, and in particular to understand many neural network algorithms and architectures as instances of a broader probabilistic methodology. It also makes it possible to identify novel features of neural network algorithms and architectures and to extend them to more general graphical models.This book exemplifies the interplay between the general formal framework of graphical models and the exploration of new algorithms and architectures. The selections range from foundational papers of historical importance to results at the cutting edge of research.Contributors H. Attias, C. M. Bishop, B. J. Frey, Z. Ghahramani, D. Heckerman, G. E. Hinton, R. Hofmann, R. A. Jacobs, Michael I. Jordan, H. J. Kappen, A. Krogh, R. Neal, S. K. Riis, F. B. Rodr�iguez, L. K. Saul, Terrence J. Sejnowski, P. Smyth, M. E. Tipping, V. Tresp, Y. Weiss.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/29/2015.
650 0 _aNeural networks (Computer science)
_93414
650 0 _aComputer graphics.
_94088
655 0 _aElectronic books.
_93294
700 1 _aJordan, Michael Irwin,
_d1956-
_923647
700 1 _aSejnowski, Terrence J.
_q(Terrence Joseph)
_923648
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_923649
710 2 _aMIT Press,
_epublisher.
_923650
776 0 8 _iPrint version:
_z9780262600422
830 0 _aComputational neuroscience
_922622
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6276852
942 _cEBK
999 _c73248
_d73248