000 | 06879nam a2201297 i 4500 | ||
---|---|---|---|
001 | 5236612 | ||
003 | IEEE | ||
005 | 20220712205605.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 090727t20152009njua ob 001 0 eng d | ||
020 |
_a9780470382776 _qelectronic |
||
020 |
_z0470276800 _qpaper |
||
020 |
_z9780470276808 _qpaper |
||
020 |
_z0470382783 _qelectronic |
||
020 |
_z0470382775 _qelectronic |
||
020 |
_z9780470382783 _qelectronic |
||
024 | 7 |
_a10.1002/9780470382776 _2doi |
|
035 | _a(CaBNVSL)mat05236612 | ||
035 | _a(IDAMS)0b00006481094c83 | ||
040 |
_aCaBNVSL _beng _erda _cCaBNVSL _dCaBNVSL |
||
050 | 4 |
_aQA278 _b.X8 2009eb |
|
050 | 4 |
_aQA278 _b.X87 2009eb |
|
082 | 0 |
_a519.5/3 _222 |
|
082 | 0 | 4 |
_a519.53 _222 |
100 | 1 |
_aXu, Rui. _eauthor. _926335 |
|
245 | 1 | 0 |
_aClustering / _cRui Xu, Donald C. Wunsch II. |
264 | 1 |
_aPiscataway, New Jersey : _bIEEE Press, _cc2009. |
|
264 | 2 |
_a[Piscataqay, New Jersey] : _bIEEE Xplore, _c2008. |
|
300 |
_a1 PDF (x, 358 pages) : _billustrations. |
||
336 |
_atext _2rdacontent |
||
337 |
_aelectronic _2isbdmedia |
||
338 |
_aonline resource _2rdacarrier |
||
490 | 1 |
_aIEEE Press Series on Computational Intelligence ; _v10 |
|
504 | _aIncludes bibliographical references and indexes. | ||
505 | 0 | _aPREFACE -- 1. CLUSTER ANALYSIS -- 1.1. Classifi cation and Clustering -- 1.2. Defi nition of Clusters -- 1.3. Clustering Applications -- 1.4. Literature of Clustering Algorithms -- 1.5. Outline of the Book -- 2. PROXIMITY MEASURES -- 2.1. Introduction -- 2.2. Feature Types and Measurement Levels -- 2.3. Defi nition of Proximity Measures -- 2.4. Proximity Measures for Continuous Variables -- 2.5. Proximity Measures for Discrete Variables -- 2.6. Proximity Measures for Mixed Variables -- 2.7. Summary -- 3. HIERARCHICAL CLUSTERING. -- 3.1. Introduction -- 3.2. Agglomerative Hierarchical Clustering -- 3.3. Divisive Hierarchical Clustering -- 3.4. Recent Advances -- 3.5. Applications -- 3.6. Summary -- 4. PARTITIONAL CLUSTERING -- 4.1. Introduction -- 4.2. Clustering Criteria -- 4.3. K-Means Algorithm -- 4.4. Mixture Density-Based Clustering -- 4.5. Graph Theory-Based Clustering -- 4.6. Fuzzy Clustering -- 4.7. Search Techniques-Based Clustering Algorithms -- 4.8. Applications -- 4.9. Summary -- 5. NEURAL NETWORK-BASED CLUSTERING -- 5.1. Introduction -- 5.2. Hard Competitive Learning Clustering -- 5.3. Soft Competitive Learning Clustering -- 5.4. Applications -- 5.5. Summary -- 6. KERNEL-BASED CLUSTERING -- 6.1. Introduction -- 6.2. Kernel Principal Component Analysis -- 6.3. Squared-Error-Based Clustering with Kernel Functions -- 6.4. Support Vector Clustering -- 6.5. Applications -- 6.6. Summary -- 7. SEQUENTIAL DATA CLUSTERING -- 7.1. Introduction -- 7.2. Sequence Similarity -- 7.3. Indirect Sequence Clustering -- 7.4. Model-Based Sequence Clustering -- 7.5. Applications--Genomic and Biological Sequence -- 7.6. Summary -- 8. LARGE-SCALE DATA CLUSTERING -- 8.1. Introduction -- 8.2. Random Sampling Methods -- 8.3. Condensation-Based Methods -- 8.4. Density-Based Methods -- 8.5. Grid-Based Methods -- 8.6. Divide and Conquer -- 8.7. Incremental Clustering -- 8.8. Applications -- 8.9. Summary -- 9. DATA VISUALIZATION AND HIGH-DIMENSIONAL DATA CLUSTERING. | |
505 | 8 | _a9.1. Introduction -- 9.2. Linear Projection Algorithms -- 9.3. Nonlinear Projection Algorithms -- 9.4. Projected and Subspace Clustering -- 9.5. Applications -- 9.6. Summary -- 10. CLUSTER VALIDITY -- 10.1. Introduction -- 10.2. External Criteria -- 10.3. Internal Criteria -- 10.4. Relative Criteria -- 10.5. Summary -- 11. CONCLUDING REMARKS -- PROBLEMS -- REFERENCES -- AUTHOR INDEX -- SUBJECT INDEX. | |
506 | 1 | _aRestricted to subscribers or individual electronic text purchasers. | |
516 | _aText. | ||
520 | _aThis is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network-based clustering; kernel-based clustering; sequential data clustering; large-scale data clustering; data visualization and high-dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds. | ||
530 | _aAlso available in print. | ||
538 | _aMode of access: World Wide Web | ||
588 | _aTitle from title screen. | ||
588 | _aDescription based on PDF viewed 12/21/2015. | ||
650 | 0 |
_aCluster analysis. _926336 |
|
650 | 0 |
_aCluster analysis _xData processing. _99040 |
|
655 | 0 |
_aElectronic books. _93294 |
|
695 | _aSampling methods | ||
695 | _aSearch problems | ||
695 | _aSections | ||
695 | _aShape | ||
695 | _aSun | ||
695 | _aSurgery | ||
695 | _aTemperature measurement | ||
695 | _aTime measurement | ||
695 | _aVectors | ||
695 | _aAerospace electronics | ||
695 | _aAlgorithm design and analysis | ||
695 | _aAnimals | ||
695 | _aApproximation algorithms | ||
695 | _aArtificial neural networks | ||
695 | _aBibliographies | ||
695 | _aBinary trees | ||
695 | _aBioinformatics | ||
695 | _aBiology | ||
695 | _aClustering algorithms | ||
695 | _aColon | ||
695 | _aComplexity theory | ||
695 | _aConvergence | ||
695 | _aCouplings | ||
695 | _aCovariance matrix | ||
695 | _aDNA | ||
695 | _aData analysis | ||
695 | _aData mining | ||
695 | _aData structures | ||
695 | _aData visualization | ||
695 | _aDatabases | ||
695 | _aDiseases | ||
695 | _aDynamic programming | ||
695 | _aEigenvalues and eigenfunctions | ||
695 | _aFeature extraction | ||
695 | _aFrequency modulation | ||
695 | _aGenomics | ||
695 | _aHeuristic algorithms | ||
695 | _aHorses | ||
695 | _aHumans | ||
695 | _aIndexes | ||
695 | _aIterative algorithm | ||
695 | _aKernel | ||
695 | _aLead | ||
695 | _aLesions | ||
695 | _aMinimization | ||
695 | _aNearest neighbor searches | ||
695 | _aNeurons | ||
695 | _aNickel | ||
695 | _aNoise | ||
695 | _aPain | ||
695 | _aPartitioning algorithms | ||
695 | _aPolynomials | ||
695 | _aPrincipal component analysis | ||
695 | _aProteins | ||
695 | _aPrototypes | ||
695 | _aQ measurement | ||
700 | 1 |
_aWunsch, Donald C. _4aut _926337 |
|
710 | 2 |
_aIEEE Xplore (Online Service), _edistributor. _926338 |
|
710 | 2 |
_aJohn Wiley & Sons _epublisher. _96902 |
|
776 | 0 | 8 |
_iPrint version: _z9780470276808 |
830 | 0 |
_aIEEE Press Series on Computational Intelligence ; _v10 _926339 |
|
856 | 4 | 2 |
_3Abstract with links to resource _uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5236612 |
942 | _cEBK | ||
999 |
_c73743 _d73743 |