000 05990nam a2201117 i 4500
001 5271182
003 IEEE
005 20220712205711.0
006 m o d
007 cr |n|||||||||
008 151221s2003 njua ob 001 eng d
020 _a9780470547199
_qelectronic
020 _z9780471259756
_qprint
020 _z0470547197
_qelectronic
024 7 _a10.1109/9780470547199
_2doi
035 _a(CaBNVSL)mat05271182
035 _a(IDAMS)0b000064810cc91d
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQA274
_b.L88 2003eb
082 0 4 _a621.38223
_222
100 1 _aLudeman, Lonnie C.,
_eauthor.
_927118
245 1 0 _aRandom processes :
_bfiltering, estimation, and detection /
_cLonnie C. Ludeman.
264 1 _aHoboken, New Jersey :
_bWiley-Interscience,
_cc2003.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2003]
300 _a1 PDF (xvii, 608 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 _aPreface. -- Experiments and Probability. -- Random Variables. -- Estimation of Random Variables. -- Random Processes. -- Linear Systems: Random Processes. -- Nonlinear Systems: Random Processes. -- Optimum Linear Filters: The Wiener Approach. -- Optimum Linear Systems: The Kalman Approach. -- Detection Theory: Discrete Observation. -- Detection Theory: Continuous Observation. -- Appendix A. The Bilateral Laplace Transform. -- Appendix B. Table of Binomial Probabilities. -- Appendix C. Table of Discrete Random Variables and Properties. -- Appendix D. Table of Continuous Random Variables and Properties. -- Appendix E. Table of Gaussian Cumulative Distribution Function. -- Index.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aAn understanding of random processes is crucial to many engineering fields-including communication theory, computer vision, and digital signal processing in electrical and computer engineering, and vibrational theory and stress analysis in mechanical engineering. The filtering, estimation, and detection of random processes in noisy environments are critical tasks necessary in the analysis and design of new communications systems and useful signal processing algorithms. Random Processes: Filtering, Estimation, and Detection clearly explains the basics of probability and random processes and details modern detection and estimation theory to accomplish these tasks. In this book, Lonnie Ludeman, an award-winning authority in digital signal processing, joins the fundamentals of random processes with the standard techniques of linear and nonlinear systems analysis and hypothesis testing to give signal estimation techniques, specify optimum estimation procedures, provide optimum decision rules for classification purposes, and describe performance evaluation definitions and procedures for the resulting methods. The text covers four main, interrelated topics: * Probability and characterizations of random variables and random processes * Linear and nonlinear systems with random excitations * Optimum estimation theory including both the Wiener and Kalman Filters * Detection theory for both discrete and continuous time measurements Lucid, thorough, and well-stocked with numerous examples and practice problems that emphasize the concepts discussed, Random Processes: Filtering, Estimation, and Detection is an understandable and useful text ideal as both a self-study guide for professionals in the field and as a core text for graduate students.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/21/2015.
650 0 _aStochastic processes.
_93246
650 0 _aSignal processing.
_94052
650 0 _aImage processing.
_97417
651 7 _aProcessos Estocasticos.
_2larpcal
_927119
655 0 _aElectronic books.
_93294
695 _aAWGN
695 _aAdditive white noise
695 _aApproximation methods
695 _aArtificial intelligence
695 _aConcrete
695 _aContinuous time systems
695 _aConvergence
695 _aConvolution
695 _aCorrelation
695 _aCost function
695 _aCovariance matrix
695 _aDensity functional theory
695 _aDistribution functions
695 _aEquations
695 _aEstimation
695 _aExtraterrestrial measurements
695 _aFinite element methods
695 _aFourier transforms
695 _aFrequency domain analysis
695 _aGaussian distribution
695 _aGaussian processes
695 _aIndexes
695 _aIndexing
695 _aInformation filters
695 _aIntegral equations
695 _aJoints
695 _aKalman filters
695 _aKernel
695 _aLaplace equations
695 _aLinear systems
695 _aMathematical model
695 _aMaximum likelihood detection
695 _aMeasurement uncertainty
695 _aNonlinear filters
695 _aNonlinear systems
695 _aPattern recognition
695 _aPower measurement
695 _aProbability
695 _aProbability density function
695 _aRadar
695 _aRandom processes
695 _aRandom variables
695 _aStrips
695 _aSupport vector machine classification
695 _aTesting
695 _aTime domain analysis
695 _aTime measurement
695 _aTime varying systems
695 _aTransforms
695 _aVectors
710 2 _aJohn Wiley & Sons,
_epublisher.
_96902
710 2 _aIEEE Xplore (Online service),
_edistributor.
_927120
776 0 8 _iPrint version:
_z9780471259756
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5271182
942 _cEBK
999 _c73971
_d73971