000 | 11568nam a2201093 i 4500 | ||
---|---|---|---|
001 | 5732791 | ||
003 | IEEE | ||
005 | 20220712205756.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 151221s2010 nju ob 001 eng d | ||
010 | _z 2010039152 (print) | ||
020 | _a9780470484401 | ||
020 |
_a9780470872130 _qoBook |
||
020 |
_z0470872128 _qeBook |
||
020 |
_z0470484403 _qhardback |
||
020 |
_z0470872136 _qoBook |
||
020 |
_z9780470872123 _qeBook |
||
020 |
_z9780470484401 _qhardback |
||
024 | 7 |
_a10.1002/9780470872130 _2doi |
|
035 | _a(CaBNVSL)mat05732791 | ||
035 | _a(IDAMS)0b000064814ec029 | ||
040 |
_aCaBNVSL _beng _erda _cCaBNVSL _dCaBNVSL |
||
050 | 4 |
_aTK1010 _b.C48 2011eb |
|
082 | 0 | 0 |
_a621.319 _222 |
100 | 1 |
_aChiang, H., _q(Hsiao-Dong), _eauthor. _927638 |
|
245 | 1 | 0 |
_aDirect methods for stability analysis of electric power systems : _btheoretical foundation, BCU methodologies, and applications / _cHsiao-Dong Chiang. |
264 | 1 |
_aHoboken, New Jersey : _bWiley, _cc2011. |
|
264 | 2 |
_a[Piscataqay, New Jersey] : _bIEEE Xplore, _c[2010] |
|
300 | _a1 PDF (xiv, 494 pages). | ||
336 |
_atext _2rdacontent |
||
337 |
_aelectronic _2isbdmedia |
||
338 |
_aonline resource _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aPreface -- Acknowledgments -- 1. Introduction and Overview -- 1.1 Introduction -- 1.2 Trends of Operating Environment -- 1.3 Online TSA -- 1.4 Need for New Tools -- 1.5 Direct Methods: Limitations and Challenges -- 1.6 Purposes of This Book -- 2. System Modeling and Stability Problems -- 2.1 Introduction -- 2.2 Power System Stability Problem -- 2.3 Model Structures and Parameters -- 2.4 Measurement-Based Modeling -- 2.5 Power System Stability Problems -- 2.6 Approaches for Stability Analysis -- 2.7 Concluding Remarks -- 3. Lyapunov Stability and Stability Regions of Nonlinear Dynamical Systems -- 3.1 Introduction -- 3.2 Equilibrium Points and Lyapunov Stability -- 3.3 Lyapunov Function Theory -- 3.4 Stable and Unstable Manifolds -- 3.5 Stability Regions -- 3.6 Local Characterizations of Stability Boundary -- 3.7 Global Characterization of Stability Boundary -- 3.8 Algorithm to Determine the Stability Boundary -- 3.9 Conclusion -- 4. Quasi-Stability Regions: Analysis and Characterization -- 4.1 Introduction -- 4.2 Quasi-Stability Region -- 4.3 Characterization of Quasi-Stability Regions -- 4.4 Conclusions -- 5. Energy Function Theory and Direct Methods -- 5.1 Introduction -- 5.2 Energy Functions -- 5.3 Energy Function Theory -- 5.4 Estimating Stability Region Using Energy Functions -- 5.5 Optimal Schemes for Estimating Stability Regions -- 5.6 Quasi-Stability Region and Energy Function -- 5.7 Conclusion -- 6. Constructing Analytical Energy Functions for Transient Stability Models -- 6.1 Introduction -- 6.2 Energy Functions for Lossless Network-Reduction Models -- 6.3 Energy Functions for Lossless Structure-Preserving Models -- 6.4 Nonexistence of Energy Functions for Lossy Models -- 6.5 Existence of Local Energy Functions -- 6.6 Concluding Remarks -- 7. Construction of Numerical Energy Functions for Lossy Transient Stability Models -- 7.1 Introduction -- 7.2 A Two-Step Procedure -- 7.3 First Integral-Based Procedure -- 7.4 Ill-Conditioned Numerical Problems -- 7.5 Numerical Evaluations of Approximation Schemes. | |
505 | 8 | _a7.6 Multistep Trapezoidal Scheme -- 7.7 On the Corrected Numerical Energy Functions -- 7.8 Concluding Remarks -- 8. Direct Methods for Stability Analysis: An Introduction -- 8.1 Introduction -- 8.2 A Simple System -- 8.3 Closest UEP Method -- 8.4 Controlling UEP Method -- 8.5 PEBS Method -- 8.6 Concluding Remarks -- 9. Foundation of the Closest UEP Method -- 9.1 Introduction -- 9.2 A Structure-Preserving Model -- 9.3 Closest UEP -- 9.4 Characterization of the Closest UEP -- 9.5 Closest UEP Method -- 9.6 Improved Closest UEP Method -- 9.7 Robustness of the Closest UEP -- 9.8 Numerical Studies -- 9.9 Conclusions -- 10. Foundations of the Potential Energy Boundary Surface Method -- 10.1 Introduction -- 10.2 Procedure of the PEBS Method -- 10.3 Original Model and Artifi cial Model -- 10.4 Generalized Gradient Systems -- 10.5 A Class of Second-Order Dynamical Systems -- 10.6 Relation between the Original Model and the Artifi cial Model -- 10.7 Analysis of the PEBS Method -- 10.8 Concluding Remarks -- 11. Controlling UEP Method: Theory -- 11.1 Introduction -- 11.2 The Controlling UEP -- 11.3 Existence and Uniqueness -- 11.4 The Controlling UEP Method -- 11.5 Analysis of the Controlling UEP Method -- 11.6 Numerical Examples -- 11.7 Dynamic and Geometric Characterizations -- 11.8 Concluding Remarks -- 12. Controlling UEP Method: Computations -- 12.1 Introduction -- 12.2 Computational Challenges -- 12.3 Constrained Nonlinear Equations for Equilibrium Points -- 12.4 Numerical Techniques for Computing Equilibrium Points -- 12.5 Convergence Regions of Equilibrium Points -- 12.6 Conceptual Methods for Computing the Controlling UEP -- 12.7 Numerical Studies -- 12.8 Concluding Remarks -- 13. Foundations of Controlling UEP Methods for Network-Preserving Transient Stability Models -- 13.1 Introduction -- 13.2 System Models -- 13.3 Stability Regions -- 13.4 Singular Perturbation Approach -- 13.5 Energy Functions for Network-Preserving Models -- 13.6 Controlling UEP for DAE Systems. | |
505 | 8 | _a13.7 Controlling UEP Method for DAE Systems -- 13.8 Numerical Studies -- 13.9 Concluding Remarks -- 14. Network-Reduction BCU Method and Its Theoretical Foundation -- 14.1 Introduction -- 14.2 Reduced-State System -- 14.3 Analytical Results -- 14.4 Static and Dynamic Relationships -- 14.5 Dynamic Property (D3) -- 14.6 A Conceptual Network-Reduction BCU Method -- 14.7 Concluding Remarks -- 15. Numerical Network-Reduction BCU Method -- 15.1 Introduction -- 15.2 Computing Exit Points -- 15.3 Stability-Boundary-Following Procedure -- 15.4 A Safeguard Scheme -- 15.5 Illustrative Examples -- 15.6 Numerical Illustrations -- 15.7 IEEE Test System -- 15.8 Concluding Remarks -- 16. Network-Preserving BCU Method and Its Theoretical Foundation -- 16.1 Introduction -- 16.2 Reduced-State Model -- 16.3 Static and Dynamic Properties -- 16.4 Analytical Results -- 16.5 Overall Static and Dynamic Relationships -- 16.6 Dynamic Property (D3) -- 16.7 Conceptual Network-Preserving BCU Method -- 16.8 Concluding Remarks -- 17. Numerical Network-Preserving BCU Method -- 17.1 Introduction -- 17.2 Computational Considerations -- 17.3 Numerical Scheme to Detect Exit Points -- 17.4 Computing the MGP -- 17.5 Computation of Equilibrium Points -- 17.6 Numerical Examples -- 17.7 Large Test Systems -- 17.8 Concluding Remarks -- 18. Numerical Studies of BCU Methods from Stability Boundary Perspectives -- 18.1 Introduction -- 18.2 Stability Boundary of Network-Reduction Models -- 18.3 Network-Preserving Model -- 18.4 One Dynamic Property of the Controlling UEP -- 18.5 Concluding Remarks -- 19. Study of the Transversality Conditions of the BCU Method -- 19.1 Introduction -- 19.2 A Parametric Study -- 19.3 Analytical Investigation of the Boundary Property -- 19.4 The Two-Machine Infi nite Bus (TMIB) System -- 19.5 Numerical Studies -- 19.6 Concluding Remarks -- 20. The BCU-Exit Point Method -- 20.1 Introduction -- 20.2 Boundary Property -- 20.3 Computation of the BCU-Exit Point -- 20.4 BCU-Exit Point and Critical Energy. | |
505 | 8 | _a20.5 BCU-Exit Point Method -- 20.6 Concluding Remarks -- 21. Group Properties of Contingencies in Power Systems -- 21.1 Introduction -- 21.2 Groups of Coherent Contingencies -- 21.3 Identifi cation of a Group of Coherent Contingencies -- 21.4 Static Group Properties -- 21.5 Dynamic Group Properties -- 21.6 Concluding Remarks -- 22. Group-Based BCU-Exit Method -- 22.1 Introduction -- 22.2 Group-Based Verifi cation Scheme -- 22.3 Linear and Nonlinear Relationships -- 22.4 Group-Based BCU-Exit Point Method -- 22.5 Numerical Studies -- 22.6 Concluding Remarks -- 23. Group-Based BCU-CUEP Methods -- 23.1 Introduction -- 23.2 Exact Method for Computing the Controlling UEP -- 23.3 Group-Based BCU-CUEP Method -- 23.4 Numerical Studies -- 23.5 Concluding Remarks -- 24. Group-Based BCU Method -- 24.1 Introduction -- 24.2 Group-Based BCU Method for Accurate Critical Energy -- 24.3 Group-Based BCU Method for CUEPs -- 24.4 Numerical Studies -- 24.5 Concluding Remarks -- 25. Perspectives and Future Directions -- 25.1 Current Developments -- 25.2 Online Dynamic Contingency Screening -- 25.3 Further Improvements -- 25.4 Phasor Measurement Unit (PMU)-Assisted Online ATC Determination -- 25.5 Emerging Applications -- 25.6 Concluding Remarks -- Appendix -- A1.1 Mathematical Preliminaries -- A1.2 Proofs of Theorems in Chapter 9 -- A1.3 Proofs of Theorems in Chapter 10 -- Bibliography -- Index. | |
506 | 1 | _aRestricted to subscribers or individual electronic text purchasers. | |
520 |
_a"This book describes the BCU method (Boundary of Stability Region Based Controlling Unstable Equilibrium Point method)"-- _cProvided by publisher. |
||
520 |
_a"Widely accepted around the world, the BCU method is the only direct method used in the power industry. Direct Methods for Stability Analysis of Electric Power Systems presents a comprehensive theoretical foundation of the method and its numerical implementation. This book provides graduate students, researchers, and practitioners with theoretical foundations of direct methods, energy functions, and the BCU method as well as the group-based BCU method and its applications. Numerical studies on industrial models and data are also included"-- _cProvided by publisher. |
||
530 | _aAlso available in print. | ||
538 | _aMode of access: World Wide Web | ||
588 | _aDescription based on PDF viewed 12/21/2015. | ||
650 | 0 |
_aBoundary element methods. _94845 |
|
650 | 0 |
_aElectric power systems _xMathematical models. _914006 |
|
650 | 0 |
_aElectric power system stability. _97951 |
|
655 | 0 |
_aElectronic books. _93294 |
|
695 | _aAnalytical models | ||
695 | _aApproximation methods | ||
695 | _aAsymptotic stability | ||
695 | _aBibliographies | ||
695 | _aCircuit faults | ||
695 | _aComputational modeling | ||
695 | _aConvergence | ||
695 | _aDamping | ||
695 | _aEar | ||
695 | _aEquations | ||
695 | _aEuclidean distance | ||
695 | _aGenerators | ||
695 | _aIndexes | ||
695 | _aInterpolation | ||
695 | _aLoad modeling | ||
695 | _aLyapunov methods | ||
695 | _aManifolds | ||
695 | _aMathematical model | ||
695 | _aNewton method | ||
695 | _aNonlinear dynamical systems | ||
695 | _aNumerical models | ||
695 | _aNumerical stability | ||
695 | _aParametric study | ||
695 | _aPotential energy | ||
695 | _aPower system dynamics | ||
695 | _aPower system reliability | ||
695 | _aPower system stability | ||
695 | _aPower system transients | ||
695 | _aPower systems | ||
695 | _aReactive power | ||
695 | _aRegions | ||
695 | _aRotors | ||
695 | _aSecurity | ||
695 | _aSet theory | ||
695 | _aStability analysis | ||
695 | _aStability criteria | ||
695 | _aTopology | ||
695 | _aTrajectory | ||
695 | _aTransient analysis | ||
695 | _aVideo recording | ||
695 | _aXenon | ||
710 | 2 |
_aJohn Wiley & Sons, _epublisher. _96902 |
|
710 | 2 |
_aIEEE Xplore (Online service), _edistributor. _927639 |
|
856 | 4 | 2 |
_3Abstract with links to resource _uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5732791 |
942 | _cEBK | ||
999 |
_c74126 _d74126 |