000 11050nam a2201405 i 4500
001 6266791
003 IEEE
005 20220712205833.0
006 m o d
007 cr |n|||||||||
008 151222s2012 nju ob 001 eng d
020 _a9781118310052
_qebook
020 _z9780470604656
_qprint
020 _z1118310055
_qelectronic
020 _z9781118309995
_qelectronic
020 _z0470486759
_qCloth
020 _z9780470486757
_qCloth
035 _a(CaBNVSL)mat06266791
035 _a(IDAMS)0b000064818b36d5
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTA169
_b.D47 2012eb
082 0 4 _a620/.00452
_223
245 0 0 _aDesign for reliability /
_cedited by Dev Raheja, Louis J. Gullo.
264 1 _aHoboken, New Jersey :
_bWiley,
_c2012.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2012]
300 _a1 PDF (220 pages).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aQuality and reliability engineering series
504 _aIncludes bibliographical references and index.
505 0 _aContributors xiii -- Foreword xv -- Preface xvii -- Introduction: What You Will Learn xix -- 1 Design for Reliability Paradigms 1 -- Dev Raheja -- Why Design for Reliability? 1 -- Reflections on the Current State of the Art 2 -- The Paradigms for Design for Reliability 4 -- Summary 13 -- References 13 -- 2 Reliability Design Tools 15 -- Joseph A. Childs -- Introduction 15 -- Reliability Tools 19 -- Test Data Analysis 31 -- Summary 34 -- References 35 -- 3 Developing Reliable Software 37 -- Samuel Keene -- Introduction and Background 37 -- Software Reliability: Definitions and Basic Concepts 40 -- Software Reliability Design Considerations 44 -- Operational Reliability Requires Effective Change Management 48 -- Execution-Time Software Reliability Models 48 -- Software Reliability Prediction Tools Prior to Testing 49 -- References 51 -- 4 Reliability Models 53 -- Louis J. Gullo -- Introduction 53 -- Reliability Block Diagram: System Modeling 56 -- Example of System Reliability Models Using RBDs 57 -- Reliability Growth Model 60 -- Similarity Analysis and Categories of a Physical Model 60 -- Monte Carlo Models 62 -- Markov Models 62 -- References 64 -- 5 Design Failure Modes, Effects, and Criticality Analysis 67 -- Louis J. Gullo -- Introduction to FMEA and FMECA 67 -- Design FMECA 68 -- Principles of FMECA-MA 71 -- Design FMECA Approaches 72 -- Example of a Design FMECA Process 74 -- Risk Priority Number 82 -- Final Thoughts 86 -- References 86 -- 6 Process Failure Modes, Effects, and Criticality Analysis 87 -- Joseph A. Childs -- Introduction 87 -- Principles of P-FMECA 87 -- Use of P-FMECA 88 -- What Is Required Before Starting 90 -- Performing P-FMECA Step by Step 91 -- Improvement Actions 98 -- Reporting Results 100 -- Suggestions for Additional Reading 101 -- 7 FMECA Applied to Software Development 103 -- Robert W. Stoddard -- Introduction 103 -- Scoping an FMECA for Software Development 104 -- FMECA Steps for Software Development 106 -- Important Notes on Roles and Responsibilities with Software FMECA 116.
505 8 _aLessons Learned from Conducting Software FMECA 117 -- Conclusions 119 -- References 120 -- 8 Six Sigma Approach to Requirements Development 121 -- Samuel Keene -- Early Experiences with Design of Experiments 121 -- Six Sigma Foundations 124 -- The Six Sigma Three-Pronged Initiative 126 -- The RASCI Tool 128 -- Design for Six Sigma 129 -- Requirements Development: The Principal Challenge to System Reliability 130 -- The GQM Tool 131 -- The Mind Mapping Tool 132 -- References 135 -- 9 Human Factors in Reliable Design 137 -- Jack Dixon -- Human Factors Engineering 137 -- A Design Engineer's Interest in Human Factors 138 -- Human-Centered Design 138 -- Human Factors Analysis Process 144 -- Human Factors and Risk 150 -- Human Error 150 -- Design for Error Tolerance 153 -- Checklists 154 -- Testing to Validate Human Factors in Design 154 -- References 154 -- 10 Stress Analysis During Design to Eliminate Failures 157 -- Louis J. Gullo -- -- Principles of Stress Analysis 157 -- Mechanical Stress Analysis or Durability Analysis 158 -- Finite Element Analysis 158 -- Probabilistic vs. Deterministic Methods and Failures 159 -- How Stress Analysis Aids Design for Reliability 159 -- Derating and Stress Analysis 160 -- Stress vs. Strength Curves 161 -- Software Stress Analysis and Testing 166 -- Structural Reinforcement to Improve Structural Integrity 167 -- References 167 -- 11 Highly Accelerated Life Testing 169 -- Louis J. Gullo -- Introduction 169 -- Time Compression 173 -- Test Coverage 174 -- Environmental Stresses of HALT 175 -- Sensitivity to Stresses 176 -- Design Margin 178 -- Sample Size 180 -- Conclusions 180 -- Reference 181 -- 12 Design for Extreme Environments 183 -- Steven S. Austin -- Overview 183 -- Designing for Extreme Environments 183 -- Designing for Cold 184 -- Designing for Heat 186 -- References 191 -- 13 Design for Trustworthiness 193 -- Lawrence Bernstein and C. M. Yuhas -- Introduction 193 -- Modules and Components 196 -- Politics of Reuse 200.
505 8 _aDesign Principles 201 -- Design Constraints That Make Systems Trustworthy 204 -- Conclusions 210 -- References and Notes 211 -- 14 Prognostics and Health Management Capabilities to Improve Reliability 213 -- Louis J. Gullo -- Introduction 213 -- PHM Is Department of Defense Policy 216 -- Condition-Based Maintenance vs. Time-Based Maintenance 216 -- Monitoring and Reasoning of Failure Precursors 217 -- Monitoring Environmental and Usage Loads for Damage Modeling 218 -- Fault Detection, Fault Isolation, and Prognostics 218 -- Sensors for Automatic Stress Monitoring 220 -- References 221 -- 15 Reliability Management 223 -- Joseph A. Childs -- Introduction 223 -- Planning, Execution, and Documentation 229 -- Closing the Feedback Loop: Reliability Assessment, Problem Solving, and Growth 232 -- References 233 -- 16 Risk Management, Exception Handling, and Change Management 235 -- Jack Dixon -- Introduction to Risk 235 -- Importance of Risk Management 236 -- Why Many Risks Are Overlooked 237 -- Program Risk 239 -- Design Risk 241 -- Risk Assessment 242 -- Risk Identification 243 -- Risk Estimation 244 -- Risk Evaluation 245 -- Risk Mitigation 247 -- Risk Communication 248 -- Risk and Competitiveness 249 -- Risk Management in the Change Process 249 -- Configuration Management 249 -- References 251 -- 17 Integrating Design for Reliability with Design for Safety 253 -- Brian Moriarty -- Introduction 253 -- Start of Safety Design 254 -- Reliability in System Safety Design 255 -- Safety Analysis Techniques 255 -- Establishing Safety Assessment Using the Risk Assessment Code Matrix 260 -- Design and Development Process for Detailed Safety Design 261 -- Verification of Design for Safety Includes Reliability 261 -- Examples of Design for Safety with Reliability Data 262 -- Final Thoughts 266 -- References 266 -- 18 Organizational Reliability Capability Assessment 267 -- Louis J. Gullo -- Introduction 267 -- The Benefits of IEEE 1624-2008 269 -- Organizational Reliability Capability 270.
505 8 _aReliability Capability Assessment 271 -- Design Capability and Performability 271 -- IEEE 1624 Scoring Guidelines 276 -- SEI CMMI Scoring Guidelines 277 -- Organizational Reliability Capability Assessment Process 278 -- Advantages of High Reliability 282 -- Conclusions 283 -- References 284 -- Index 285.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _a"The aim of Design for Reliability (DFR) is to design for zero failures of critical system functions, which results in enormous savings in life cycle costs for producers and users. This practical guide helps readers to understand the best-of-breed methods, technologies, and tools for incorporating reliability into the complex systems design process. A significant feature of the book is the integration of ideas from computer science and market engineering. By adopting these design principles and learning from "insight" panels, engineers and managers will improve their ability to compete in global markets"--
_cProvided by publisher.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/22/2015.
650 0 _aReliability (Engineering)
_93395
655 0 _aElectronic books.
_93294
695 _aAcceleration
695 _aAnalytical models
695 _aAssembly
695 _aAvailability
695 _aBiological system modeling
695 _aBridges
695 _aBusiness
695 _aChapters
695 _aCollaboration
695 _aCompanies
695 _aComputer architecture
695 _aContext
695 _aCreep
695 _aDocumentation
695 _aFault tolerance
695 _aFault tolerant systems
695 _aHardware
695 _aHazards
695 _aHeating
695 _aHuman factors
695 _aHumans
695 _aIndexes
695 _aIndustries
695 _aInspection
695 _aIntegrated circuit modeling
695 _aIntegrated circuit reliability
695 _aLaser stability
695 _aLaser theory
695 _aLife estimation
695 _aLoss measurement
695 _aMaintenance engineering
695 _aManufacturing processes
695 _aMaterials
695 _aMonitoring
695 _aMonte Carlo methods
695 _aOrganizations
695 _aPlastics
695 _aPower system reliability
695 _aPredictive models
695 _aPreventive maintenance
695 _aProbabilistic logic
695 _aProduction
695 _aPrognostics and health management
695 _aProgram processors
695 _aReliability
695 _aReliability engineering
695 _aRisk management
695 _aSafety
695 _aSatellites
695 _aSchedules
695 _aSix sigma
695 _aSoftware
695 _aSoftware architecture
695 _aSoftware design
695 _aSoftware reliability
695 _aSoftware systems
695 _aStandards
695 _aStandards organizations
695 _aStress
695 _aSupply chains
695 _aSwitches
695 _aTesting
695 _aThermal analysis
695 _aThermal stresses
695 _aTiming
695 _aUsability
695 _aVehicles
695 _aVibrations
695 _aWarranties
700 1 _aRaheja, Dev.
_928037
700 1 _aGullo, Louis J.
_928038
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_928039
710 2 _aWiley,
_epublisher.
_928040
776 0 8 _iPrint version:
_z9780470604656
830 0 _aQuality and reliability engineering series
_99709
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6266791
942 _cEBK
999 _c74251
_d74251