000 06032nam a2201297 i 4500
001 6331046
003 IEEE
005 20220712205835.0
006 m o d
007 cr |n|||||||||
008 151222s2012 njua ob 001 eng d
020 _a9781118437957
_qebook
020 _z9780470663059
_qprint
020 _z9781118437964
_qAdobe PDF
020 _z9781118437988
_qePub
020 _z1118437969
_qAdobe PDF
020 _z1118437985
_qePub
020 _z9781118438008
_qMobiPocket
020 _z1118438000
_qMobiPocket
020 _z1118437950
_qelectronic
024 7 _a10.1002/9781118437957
_2doi
035 _a(CaBNVSL)mat06331046
035 _a(IDAMS)0b0000648193ddab
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQ325.5b.S35 2012eb
082 0 0 _a006.3/1
_223
100 1 _aSchaathun, Hans Georg,
_eauthor.
_928065
245 1 0 _aMachine learning in image steganalysis /
_cHans Georg Schaathun.
264 1 _aChichester, West Sussex, U.K. :
_bJohn Wiley,
_c2012.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2012]
300 _a1 PDF (x, 284 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aWiley - IEEE
504 _aIncludes bibliographical references.
505 8 _aFront Matter -- Overview. Introduction -- Steganography and Steganalysis -- Getting Started with a Classifier -- Features. Histogram Analysis -- Bit-Plane Analysis -- More Spatial Domain Features -- The Wavelets Domain -- Steganalysis in the JPEG Domain -- Calibration Techniques -- Classifiers. Simulation and Evaluation -- Support Vector Machines -- Other Classification Algorithms -- Feature Selection and Evaluation -- The Steganalysis Problem -- Future of the Field -- Bibliography -- Index.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aSteganography is the art of communicating a secret message, hiding the very existence of a secret message. This is typically done by hiding the message within a non-sensitive document. Steganalysis is the art and science of detecting such hidden messages. The task in steganalysis is to take an object (communication) and classify it as either a steganogram or a clean document. Most recent solutions apply classification algorithms from machine learning and pattern recognition, which tackle problems too complex for analytical solution by teaching computers to learn from empirical data. Part 1of the book is an introduction to steganalysis as part of the wider trend of multimedia forensics, as well as a practical tutorial on machine learning in this context. Part 2 is a survey of a wide range of feature vectors proposed for steganalysis with performance tests and comparisons. Part 3 is an in-depth study of machine learning techniques and classifier algorithms, and presents a critical assessment of the experimental methodology and applications in steganalysis.Key features: . Serves as a tutorial on the topic of steganalysis with brief introductions to much of the basic theory provided, and also presents a survey of the latest research.. Develops and formalises the application of machine learning in steganalysis; with much of the understanding of machine learning to be gained from this book adaptable for future study of machine learning in other applications. . Contains Python programs and algorithms to allow the reader to modify and reproduce outcomes discussed in the book.. Includes companion software available from the author's website.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/22/2015.
650 0 _aMachine learning.
_91831
650 0 _aWavelets (Mathematics)
_910807
650 0 _aData encryption (Computer science)
_99168
655 0 _aElectronic books.
_93294
695 _aCalibration
695 _aCameras
695 _aCommunities
695 _aComputers
695 _aContext
695 _aConvolution
695 _aCorrelation
695 _aDiscrete cosine transforms
695 _aDiscrete wavelet transforms
695 _aEncryption
695 _aError analysis
695 _aError probability
695 _aFeature extraction
695 _aForensics
695 _aHistograms
695 _aHistory
695 _aImage coding
695 _aImage color analysis
695 _aIndexes
695 _aIntegrated circuits
695 _aJoints
695 _aKernel
695 _aLearning systems
695 _aMachine learning
695 _aMachine learning algorithms
695 _aMarkov processes
695 _aMedia
695 _aMonitoring
695 _aMonte Carlo methods
695 _aNoise
695 _aPresses
695 _aPrinters
695 _aProbability
695 _aProbability distribution
695 _aQuantization
695 _aRandom processes
695 _aRobots
695 _aSociology
695 _aSoftware
695 _aStandards
695 _aStreaming media
695 _aSupport vector machine classification
695 _aSupport vector machines
695 _aTesting
695 _aTraining
695 _aTransform coding
695 _aTransforms
695 _aUnsolicited electronic mail
695 _aVectors
695 _aVisualization
695 _aWavelet domain
695 _aWriting
695 _aAccuracy
695 _aAdditives
695 _aAlgorithm design and analysis
695 _aAnalysis of variance
695 _aBayesian methods
695 _aBibliographies
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_928066
710 2 _aJohn Wiley & Sons,
_epublisher.
_96902
776 0 8 _iPrint version:
_z9780470663059
830 0 _aWiley - IEEE
_97628
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6331046
942 _cEBK
999 _c74260
_d74260