000 07729nam a2200541 i 4500
001 8039757
003 IEEE
005 20220712211709.0
006 m o d
007 cr |n|||||||||
008 171024s2008 maua ob 001 eng d
010 _z 2007024028 (print)
020 _a9780470519837
_qelectronic
020 _z0470028610
_qhardback
020 _z9780470028612
_qhardback
024 7 _a10.1002/9780470519837
_2doi
035 _a(CaBNVSL)mat08039757
035 _a(IDAMS)0b00006485f0da3f
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQA268
_b.N48 2007eb
082 0 0 _a003/.54
_222
100 1 _aNeubauer, Andre,
_eauthor.
_930189
245 1 0 _aCoding theory :
_balgorithms, architectures, and applications /
_cAndr�ae Neubauer, J�eurgen Freudenberger, Volker K�euhn.
264 1 _aChichester, England ;
_bJohn Wiley,
_cc2007.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2007]
300 _a1 PDF (xi, 340 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
504 _aIncludes bibliographical references (p. [325]-333) and index.
505 0 _aPreface -- 1 Introduction -- 1.1 Communication Systems -- 1.2 Information Theory -- 1.2.1 Entropy -- 1.2.2 Channel Capacity -- 1.2.3 Binary Symmetric Channel -- 1.2.4 AWGN Channel -- 1.3 A Simple Channel Code -- 2 Algebraic Coding Theory -- 2.1 Fundamentals of Block Codes -- 2.1.1 Code Parameters -- 2.1.2 Maximum Likelihood Decoding -- 2.1.3 Binary Symmetric Channel -- 2.1.4 Error Detection and Error Correction -- 2.2 Linear Block Codes. -- 2.2.1 Definition of Linear Block Codes -- 2.2.2 Generator Matrix -- 2.2.3 Parity Check Matrix -- 2.2.4 Syndrome and Cosets -- 2.2.5 Dual Code -- 2.2.6 Bounds for Linear Block Codes -- 2.2.7 Code Constructions -- 2.2.8 Examples of Linear Block Codes -- 2.3 Cyclic Codes -- 2.3.1 Definition of Cyclic Codes -- 2.3.2 Generator Polynomial -- 2.3.3 Parity Check Polynomial -- 2.3.4 Dual Codes -- 2.3.5 Linear Feedback Shift Registers -- 2.3.6 BCH Codes -- 2.3.7 Reed-Solomon Codes -- 2.3.8 Algebraic Decoding Algorithm. -- 2.4 Summary -- 3 Convolutional Codes -- 3.1 Encoding of Convolutional Codes -- 3.1.1 Convolutional Encoder -- 3.1.2 Generator Matrix in Time-Domain -- 3.1.3 State Diagram of a Convolutional Encoder -- 3.1.4 Code Termination -- 3.1.5 Puncturing -- 3.1.6 Generator Matrix in D-Domain -- 3.1.7 Encoder Properties -- 3.2 Trellis Diagram and Viterbi's Algorithm -- 3.2.1 Minimum Distance Decoding -- 3.2.2 Trellises -- 3.2.3 Viterbi Algorithm -- 3.3 Distance Properties and Error Bounds -- 3.3.1 Free Distance -- 3.3.2 Active Distances -- 3.3.3 Weight Enumerators for Terminated Codes -- 3.3.4 Path Enumerators -- 3.3.5 Pairwise Error Probability -- 3.3.6 Viterbi Bound -- 3.4 Soft Input Decoding -- 3.4.1 Euclidean Metric -- 3.4.2 Support of Punctured Codes -- 3.4.3 Implementation Issues -- 3.5 Soft Output Decoding -- 3.5.1 Derivation of APP Decoding -- 3.5.2 APP Decoding in the Log-Domain -- 3.6 Convolutional Coding in Mobile Communications -- 3.6.1 Coding of Speech Data -- 3.6.2 Hybrid ARQ. -- 3.6.3 EGPRS Modulation and Coding.
505 8 _a3.6.4 Retransmission Mechanism -- 3.6.5 Link Adaptation -- 3.6.6 Incremental Redundancy -- 3.7 Summary -- 4 Turbo Codes -- 4.1 LDPC Codes -- 4.1.1 Codes Based on Sparse Graphs -- 4.1.2 Decoding for the Binary Erasure Channel -- 4.1.3 Log-Likelihood Algebra -- 4.1.4 Belief Propagation -- 4.2 A First Encounter with Code Concatenation. -- 4.2.1 Product Codes. -- 4.2.2 Iterative Decoding of Product Codes -- 4.3 Concatenated Convolutional Codes -- 4.3.1 Parallel Concatenation -- 4.3.2 The UMTS Turbo Code -- 4.3.3 Serial Concatenation -- 4.3.4 Partial Concatenation -- 4.3.5 Turbo Decoding -- 4.4 EXIT Charts -- 4.4.1 Calculating an EXIT Chart -- 4.4.2 Interpretation -- 4.5 Weight Distribution -- 4.5.1 Partial Weights -- 4.5.2 ExpectedWeight Distribution -- 4.6 Woven Convolutional Codes -- 4.6.1 Encoding Schemes -- 4.6.2 Distance Properties of Woven Codes -- 4.6.3 Woven Turbo Codes -- 4.6.4 Interleaver Design -- 4.7 Summary -- 5 Space-Time Codes -- 5.1 Introduction -- 5.1.1 Digital Modulation Schemes -- 5.1.2 Diversity -- 5.2 Spatial Channels -- 5.2.1 Basic Description -- 5.2.2 Spatial Channel Models -- 5.2.3 Channel Estimation -- 5.3 Performance Measures -- 5.3.1 Channel Capacity -- 5.3.2 Outage Probability and Outage Capacity -- 5.3.3 Ergodic Error Probability -- 5.4 Orthogonal Space-Time Block Codes -- 5.4.1 Alamouti's Scheme -- 5.4.2 Extension to more than two Transmit Antennas -- 5.4.3 Simulation Results -- 5.5 Spatial Multiplexing -- 5.5.1 General Concept -- 5.5.2 Iterative APP Preprocessing and Per-Layer Decoding. -- 5.5.3 Linear Multi-Layer Detection -- 5.5.4 Original Bell Labs Layered Space Time (BLAST) Detection -- 5.5.5 QL Decomposition and Interference Cancellation -- 5.5.6 Performance of Multi-Layer Detection Schemes -- 5.5.7 Unified Description by Linear Dispersion Codes -- 5.6 Summary -- A. Algebraic Structures -- A.1 Groups, Rings and Finite Fields -- A.1.1 Groups -- A.1.2 Rings -- A.1.3 Finite Fields -- A.2 Vector Spaces -- A.3 Polynomials and Extension Fields.
505 8 _aA.4 Discrete Fourier Transform -- B. Linear Algebra -- C. Acronyms -- Bibliography -- Index.
506 _aRestricted to subscribers or individual electronic text purchasers.
520 _aOne of the most important key technologies for digital communication systems as well as storage media is coding theory. It provides a means to transmit information across time and space over noisy and unreliable communication channels. Coding Theory: Algorithms, Architectures and Applications provides a concise overview of channel coding theory and practice, as well as the accompanying signal processing architectures. The book is unique in presenting algorithms, architectures, and applications of coding theory in a unified framework. It covers the basics of coding theory before moving on to discuss algebraic linear block and cyclic codes, turbo codes and low density parity check codes and space-time codes. Coding Theory provides algorithms and architectures used for implementing coding and decoding strategies as well as coding schemes used in practice especially in communication systems. Feature of the book include: . Unique presentation-like style for summarising main aspects . Practical issues for implementation of coding techniques . Sound theoretical approach to practical, relevant coding methodologies . Covers standard coding schemes such as block and convolutional codes, coding schemes such as Turbo and LDPC codes, and space time codes currently in research, all covered in a common framework with respect to their applications. This book is ideal for postgraduate and undergraduate students of communication and information engineering, as well as computer science students. It will also be of use to engineers working in the industry who want to know more about the theoretical basics of coding theory and their application in currently relevant communication systems.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 10/24/2017.
650 0 _aCoding theory.
_94154
655 0 _aElectronic books.
_93294
700 1 _aFreudenberger, J�eurgen.
_930190
700 1 _aK�euhn, Volker.
_930191
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_930192
710 2 _aWiley,
_epublisher.
_930193
776 0 8 _iPrint version:
_z9780470028612
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8039757
942 _cEBK
999 _c74769
_d74769