000 06553nam a2200697 i 4500
001 9116610
003 IEEE
005 20220712211830.0
006 m o d
007 cr |n|||||||||
008 200729s2020 mau ob 001 eng d
010 _z 2019038561 (print)
015 _zGBC013542 (print)
016 _z019690868 (print)
019 _a1140721410
_a1143505573
_a1147816841
020 _a9781119547846
_qelectronic book
020 _z9781119547815
_qelectronic book
020 _z1119547814
_qelectronic book
020 _z1119547849
_qelectronic book
020 _z9781119547860
_qelectronic bk.
020 _z1119547865
_qelectronic bk.
020 _z9781119547839
_qhardcover
024 7 _a10.1002/9781119547860
_2doi
035 _a(CaBNVSL)mat09116610
035 _a(IDAMS)0b0000648cc0b2f8
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aG109.5
_b.G74 2020eb
082 0 0 _a910.285
_223
100 1 _aGrewal, Mohinder S.,
_eauthor.
_96527
245 1 0 _aGlobal navigation satellite systems, inertial navigation, and integration /
_cMohinder S. Grewal, Angus P. Andrews, Chris G. Bartone.
250 _aFourth edition.
264 1 _aHoboken, New Jersey :
_bJohn Wiley & Sons, Inc.,
_c2020.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2020]
300 _a1 PDF.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
500 _aThird edition published 2013.
500 _aOriginally published under title: Global positioning systems, inertial navigation, and integration.
504 _aIncludes bibliographical references and index.
505 8 _a1.4.2 Implementation -- References -- Chapter 2 Fundamentals of Satellite Navigation Systems -- 2.1 Chapter Focus -- 2.2 Satellite Navigation Systems Considerations -- 2.2.1 Systems Other than GNSS -- 2.2.2 Comparison Criteria -- 2.3 Satellite Navigation -- 2.3.1 GNSS Orbits -- 2.3.2 Navigation Solution (Two-Dimensional Example) -- 2.3.2.1 Symmetric Solution Using Two Transmitters on Land -- 2.3.2.2 Navigation Solution Procedure -- 2.3.3 User Solution and Dilution of Precision (DOP) -- 2.3.4 Example Calculation of DOPs -- 2.3.4.1 Four Satellites -- 2.4 Time and GPS
505 8 _a2.4.1 Coordinated Universal Time (UTC) Generation -- 2.4.2 GPS System Time -- 2.4.3 Receiver Computation of UTC -- 2.5 Example: User Position Calculations with No Errors -- 2.5.1 User Position Calculations -- 2.5.1.1 Position Calculations -- 2.5.2 User Velocity Calculations -- References -- Chapter 3 Fundamentals of Inertial Navigation -- 3.1 Chapter Focus -- 3.2 Terminology -- 3.3 Inertial Sensor Technologies -- 3.3.1 Gyroscopes -- 3.3.1.1 Momentum Wheel Gyroscopes (MWGs) -- 3.3.1.2 Coriolis Vibratory Gyroscopes (CVGs) -- 3.3.1.3 Optical Gyroscopes (RLGs and FOGs) -- 3.3.2 Accelerometers
505 8 _a3.3.2.1 Mass-spring Designs -- 3.3.2.2 Pendulous Integrating Gyroscopic Accelerometers (PIGA) -- 3.3.2.3 Electromagnetic -- 3.3.2.4 Electrostatic -- 3.3.3 Sensor Errors -- 3.3.3.1 Additive Output Noise -- 3.3.3.2 Input-output Errors -- 3.3.3.3 Error Compensation -- 3.3.4 Inertial Sensor Assembly (ISA) Calibration -- 3.3.4.1 ISA Calibration Parameters -- 3.3.4.2 Calibration Parameter Drift -- 3.3.5 Carouseling and Indexing -- 3.4 Inertial Navigation Models -- 3.4.1 Geoid Models -- 3.4.2 Terrestrial Navigation Coordinates -- 3.4.3 Earth Rotation Model -- 3.4.4 Gravity Models
505 0 _aCover -- Title Page -- Copyright -- Contents -- Preface to the Fourth Edition -- Acknowledgments -- About the Authors -- Acronyms -- About the Companion Website -- Chapter 1 Introduction -- 1.1 Navigation -- 1.1.1 Navigation-Related Technologies -- 1.1.2 Navigation Modes -- 1.2 GNSS Overview -- 1.2.1 GPS -- 1.2.1.1 GPS Orbits -- 1.2.1.2 Legacy GPS Signals -- 1.2.1.3 Modernization of GPS -- 1.2.2 Global Orbiting Navigation Satellite System (GLONASS) -- 1.2.2.1 GLONASS Orbits -- 1.2.2.2 GLONASS Signals -- 1.2.2.3 Modernized GLONASS -- 1.2.3 Galileo -- 1.2.3.1 Galileo Navigation Services
505 8 _a1.2.3.2 Galileo Signal Characteristics -- 1.2.4 BeiDou -- 1.2.4.1 BeiDou Satellites -- 1.2.4.2 Frequency -- 1.2.5 Regional Satellite Systems -- 1.2.5.1 QZSS -- 1.2.5.2 NAVIC -- 1.3 Inertial Navigation Overview -- 1.3.1 History -- 1.3.1.1 Theoretical Foundations -- 1.3.1.2 Development Challenges: Then and Now -- 1.3.2 Development Results -- 1.3.2.1 Inertial Sensors -- 1.3.2.2 Sensor Attitude Control -- 1.3.2.3 Initialization -- 1.3.2.4 Integrating Acceleration and Velocity -- 1.3.2.5 Accounting for Gravity -- 1.4 GNSS/INS Integration Overview -- 1.4.1 The Role of Kalman Filtering
506 _aRestricted to subscribers or individual electronic text purchasers.
520 _a"This book is intended for readers who need to combine Global Navigation Satellite Systems (GNSS), Inertial Navigation Systems (INS), and Kalman filters. The focus of the book is to provide readers with solutions to real-world problems. The authors provide numerous detailed examples and practice problems, including GNSS-aided INS, modeling of gyros and accelerometers, and SBAS and GBAS. This revised third edition removes information related to the now-obsolete Selective Availability and adds new material on GPS III and RAIM. It also provides updated information on low cost sensors such as MEMS, as well as GLONASS, BeiDou, and QZSS. Revisions also include added material on the more numerically stable square-root information filter (SRIF) with MATLAB programs and new examples from the GNSS system state filter for the GPS OCX, such as ensemble time filter with square-root covariance filter (SRCF) of Bierman and Thornton and SigmaRho filter"--
_cProvided by publisher.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
650 0 _aGlobal Positioning System.
_94500
650 0 _aInertial navigation.
_96528
650 0 _aKalman filtering.
_96529
655 4 _aElectronic books.
_93294
700 1 _aAndrews, Angus P.,
_eauthor.
_96541
700 1 _aBartone, Chris,
_eauthor.
_931444
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_931445
710 2 _aWiley,
_epublisher.
_931446
776 0 8 _iPrint version:
_aGrewal, Mohinder S.
_tGlobal navigation satellite systems, inertial navigation, and integration.
_bFourth Edition.
_dHoboken : Wiley, 2020
_z9781119547839
_w(DLC) 2019038560
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=9116610
942 _cEBK
999 _c75066
_d75066