000 05801nam a22005655i 4500
001 978-1-4612-6313-5
003 DE-He213
005 20220801140040.0
007 cr nn 008mamaa
008 121227s1978 xxu| s |||| 0|eng d
020 _a9781461263135
_9978-1-4612-6313-5
024 7 _a10.1007/978-1-4612-6313-5
_2doi
050 4 _aQA402.5-402.6
050 4 _aQA315-316
072 7 _aPBU
_2bicssc
072 7 _aMAT005000
_2bisacsh
072 7 _aPBU
_2thema
082 0 4 _a519.6
_223
082 0 4 _a515.64
_223
100 1 _aConway, John B.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_931673
245 1 0 _aFunctions of One Complex Variable I
_h[electronic resource] /
_cby John B. Conway.
250 _a2nd ed. 1978.
264 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c1978.
300 _aXIV, 322 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aGraduate Texts in Mathematics,
_x2197-5612 ;
_v11
505 0 _aI. The Complex Number System -- §1. The real numbers -- §2. The field of complex numbers -- §3. The complex plane -- §4. Polar representation and roots of complex numbers -- §5. Lines and half planes in the complex plane -- §6. The extended plane and its spherical representation -- II. Metric Spaces and the Topology of ? -- §1. Definition and examples of metric spaces -- §2. Connectedness -- §3. Sequences and completeness -- §4. Compactness -- §5. Continuity -- §6. Uniform convergence -- III. Elementary Properties and Examples of Analytic Functions -- §1. Power series -- §2. Analytic functions -- §3. Analytic functions as mapping, Möbius transformations -- IV. Complex Integration -- §1. Riemann-Stieltjes integrals -- §2. Power series representation of analytic functions -- §3. Zeros of an analytic function -- §4. The index of a closed curve -- §5. Cauchy’s Theorem and Integral Formula -- §6. The homotopic version of Cauchy’s Theorem and simple connectivity -- §7. Counting zeros; the Open Mapping Theorem -- §8. Goursat’s Theorem -- V. Singularities -- §1. Classification of singularities -- §2. Residues -- §3. The Argument Principle -- VI. The Maximum Modulus Theorem -- §1. The Maximum Principle -- §2. Schwarz’s Lemma -- §3. Convex functions and Hadamard’s Three Circles Theorem -- §4. Phragm>én-Lindel>üf Theorem -- VII. Compactness and Convergence in ihe Space of Analytic Functions -- §1. The space of continuous functions C(G, ?) -- §2. Spaccs of analytic functions -- §3. Spaccs of meromorphic functions -- §4. The Riemann Mapping Theorem -- §5. Weierstrass Factorization Theorem -- §6. Factorization of the sine function -- $7. The gamma function -- §8. The Riemann zeta function -- VIII. Runge’s Theorem -- §1. Runge’s Theorem -- §2. Simple connectedness -- §3. Mittag-Leffler’s Theorem -- IX. Analytic Continuation and Riemann Surfaces -- §1. Schwarz Reflection Principle -- $2. Analytic Continuation Along A Path -- §3. Monodromy Theorem -- §4. Topological Spaces and Neighborhood Systems -- $5. The Sheaf of Germs of Analytic Functions on an Open Set -- $6. Analytic Manifolds -- §7. Covering spaccs -- X. Harmonic Functions -- §1. Basic Properties of harmonic functions -- §2. Harmonic functions on a disk -- §3. Subharmonic and superharmonic functions -- §4. The Dirichlet Problem -- §5. Green’s Functions -- XI. Entire Functions -- §1. Jensen’s Formula -- §2. The genus and order of an entire function -- §3. Hadamard Factorization Theorem -- XII. The Range of an Analytic Function -- §1. Bloch’s Theorem -- §2. The Little Picard Theorem -- §3. Schottky’s Theorem -- §4. The Great Picard Theorem -- Appendix A: Calculus for Complex Valued Functions on an Interval -- Appendix B: Suggestions for Further Study and Bibliographical Notes -- References -- List of Symbols.
520 _aThis book is intended as a textbook for a first course in the theory of functions of one complex variable for students who are mathematically mature enough to understand and execute E - 8 arguments. The actual pre­ requisites for reading this book are quite minimal; not much more than a stiff course in basic calculus and a few facts about partial derivatives. The topics from advanced calculus that are used (e.g., Leibniz's rule for differ­ entiating under the integral sign) are proved in detail. Complex Variables is a subject which has something for all mathematicians. In addition to having applications to other parts of analysis, it can rightly claim to be an ancestor of many areas of mathematics (e.g., homotopy theory, manifolds). This view of Complex Analysis as "An Introduction to Mathe­ matics" has influenced the writing and selection of subject matter for this book. The other guiding principle followed is that all definitions, theorems, etc.
650 0 _aMathematical optimization.
_94112
650 0 _aCalculus of variations.
_917382
650 0 _aMathematical analysis.
_911486
650 1 4 _aCalculus of Variations and Optimization.
_931596
650 2 4 _aAnalysis.
_931580
710 2 _aSpringerLink (Online service)
_931674
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9780387942346
776 0 8 _iPrinted edition:
_z9780387903286
776 0 8 _iPrinted edition:
_z9781461263142
830 0 _aGraduate Texts in Mathematics,
_x2197-5612 ;
_v11
_931675
856 4 0 _uhttps://doi.org/10.1007/978-1-4612-6313-5
912 _aZDB-2-SMA
912 _aZDB-2-SXMS
912 _aZDB-2-BAE
942 _cEBK
999 _c75115
_d75115