000 | 03637nam a22005655i 4500 | ||
---|---|---|---|
001 | 978-3-319-51448-2 | ||
003 | DE-He213 | ||
005 | 20220801213709.0 | ||
007 | cr nn 008mamaa | ||
008 | 170420s2017 sz | s |||| 0|eng d | ||
020 |
_a9783319514482 _9978-3-319-51448-2 |
||
024 | 7 |
_a10.1007/978-3-319-51448-2 _2doi |
|
050 | 4 | _aR856-857 | |
072 | 7 |
_aMQW _2bicssc |
|
072 | 7 |
_aTEC059000 _2bisacsh |
|
072 | 7 |
_aMQW _2thema |
|
082 | 0 | 4 |
_a610.28 _223 |
100 | 1 |
_aMahjoubfar, Ata. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _933740 |
|
245 | 1 | 0 |
_aArtificial Intelligence in Label-free Microscopy _h[electronic resource] : _bBiological Cell Classification by Time Stretch / _cby Ata Mahjoubfar, Claire Lifan Chen, Bahram Jalali. |
250 | _a1st ed. 2017. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2017. |
|
300 |
_aXXXIII, 134 p. 52 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aIntroduction -- Background -- Nanometer-resolved imaging vibrometer -- Three-dimensional ultrafast laser scanner -- Label-free High-throughput Phenotypic Screening -- Time Stretch Quantitative Phase Imaging -- Big data acquisition and processing in real-time -- Deep Learning and Classification -- Optical Data Compression in Time Stretch Imaging -- Design of Warped Stretch Transform -- Concluding Remarks and Future Work -- References. | |
520 | _aThis book introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development. The authors also demonstrate a complete machine learning pipeline that performs optical phase measurement, image processing, feature extraction, and classification, enabling high-throughput quantitative imaging that achieves record high accuracy in label -free cellular phenotypic screening and opens up a new path to data-driven diagnosis. • Demonstrates how machine learning is used in high-speed microscopy imaging to facilitate medical diagnosis; • Provides a systematic and comprehensive illustration of time stretch technology; • Enables multidisciplinary application, including industrial, biomedical, and artificial intelligence. | ||
650 | 0 |
_aBiomedical engineering. _93292 |
|
650 | 0 |
_aElectronics. _93425 |
|
650 | 0 |
_aComputer vision. _933741 |
|
650 | 0 |
_aBioinformatics. _99561 |
|
650 | 1 | 4 |
_aBiomedical Engineering and Bioengineering. _931842 |
650 | 2 | 4 |
_aElectronics and Microelectronics, Instrumentation. _932249 |
650 | 2 | 4 |
_aComputer Vision. _933742 |
650 | 2 | 4 |
_aBioinformatics. _99561 |
700 | 1 |
_aChen, Claire Lifan. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _933743 |
|
700 | 1 |
_aJalali, Bahram. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _933744 |
|
710 | 2 |
_aSpringerLink (Online service) _933745 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783319514475 |
776 | 0 | 8 |
_iPrinted edition: _z9783319514499 |
776 | 0 | 8 |
_iPrinted edition: _z9783319846545 |
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-51448-2 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c75492 _d75492 |