000 03623nam a22005775i 4500
001 978-3-319-41294-8
003 DE-He213
005 20220801214452.0
007 cr nn 008mamaa
008 160727s2016 sz | s |||| 0|eng d
020 _a9783319412948
_9978-3-319-41294-8
024 7 _a10.1007/978-3-319-41294-8
_2doi
050 4 _aTK5101-5105.9
072 7 _aTJF
_2bicssc
072 7 _aTEC024000
_2bisacsh
072 7 _aTJF
_2thema
082 0 4 _a621.3
_223
100 1 _aRömer, Ulrich.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_938540
245 1 0 _aNumerical Approximation of the Magnetoquasistatic Model with Uncertainties
_h[electronic resource] :
_bApplications in Magnet Design /
_cby Ulrich Römer.
250 _a1st ed. 2016.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2016.
300 _aXXII, 114 p. 20 illus., 8 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5061
505 0 _aIntroduction -- Magnetoquasistatic Approximation of Maxwell's Equations, Uncertainty Quantification Principles -- Magnetoquasistatic Model and its Numerical Approximation -- Parametric Model, Continuity and First Order Sensitivity Analysis -- Uncertainty Quantification -- Uncertainty Quantification for Magnets -- Conclusion and Outlook.
520 _aThis book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators. .
650 0 _aTelecommunication.
_910437
650 0 _aMechanics, Applied.
_93253
650 0 _aSolids.
_93750
650 0 _aEngineering design.
_93802
650 0 _aParticle accelerators.
_919440
650 1 4 _aMicrowaves, RF Engineering and Optical Communications.
_931630
650 2 4 _aSolid Mechanics.
_931612
650 2 4 _aEngineering Design.
_93802
650 2 4 _aAccelerator Physics.
_938541
710 2 _aSpringerLink (Online service)
_938542
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319412931
776 0 8 _iPrinted edition:
_z9783319412955
776 0 8 _iPrinted edition:
_z9783319823164
830 0 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5061
_938543
856 4 0 _uhttps://doi.org/10.1007/978-3-319-41294-8
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c76380
_d76380