000 03420nam a22005895i 4500
001 978-3-030-41039-1
003 DE-He213
005 20220801214620.0
007 cr nn 008mamaa
008 200324s2020 sz | s |||| 0|eng d
020 _a9783030410391
_9978-3-030-41039-1
024 7 _a10.1007/978-3-030-41039-1
_2doi
050 4 _aTK5102.9
072 7 _aTJF
_2bicssc
072 7 _aUYS
_2bicssc
072 7 _aTEC008000
_2bisacsh
072 7 _aTJF
_2thema
072 7 _aUYS
_2thema
082 0 4 _a621.382
_223
100 1 _aLe Ny, Jerome.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_939394
245 1 0 _aDifferential Privacy for Dynamic Data
_h[electronic resource] /
_cby Jerome Le Ny.
250 _a1st ed. 2020.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2020.
300 _aXI, 110 p. 14 illus., 9 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Control, Automation and Robotics,
_x2192-6794
505 0 _aChapter 1. Defining Privacy Preserving Data Analysis -- Chapter 2. Basic Differentially Private Mechanism -- Chapter 3. A Two-Stage Architecture for Differentially Private Filtering -- Chapter 4. Differentially Private Filtering for Stationary Stochastic Collective Signals -- Chapter 5. Differentially Private Kalman Filtering -- Chapter 6. Differentially Private Nonlinear Observers -- Chapter 7. Conclusion.
520 _aThis Springer brief provides the necessary foundations to understand differential privacy and describes practical algorithms enforcing this concept for the publication of real-time statistics based on sensitive data. Several scenarios of interest are considered, depending on the kind of estimator to be implemented and the potential availability of prior public information about the data, which can be used greatly to improve the estimators' performance. The brief encourages the proper use of large datasets based on private data obtained from individuals in the world of the Internet of Things and participatory sensing. For the benefit of the reader, several examples are discussed to illustrate the concepts and evaluate the performance of the algorithms described. These examples relate to traffic estimation, sensing in smart buildings, and syndromic surveillance to detect epidemic outbreaks.
650 0 _aSignal processing.
_94052
650 0 _aData protection.
_97245
650 0 _aControl engineering.
_931970
650 0 _aInformation retrieval.
_910134
650 0 _aComputer architecture.
_93513
650 1 4 _aSignal, Speech and Image Processing .
_931566
650 2 4 _aData and Information Security.
_931990
650 2 4 _aControl and Systems Theory.
_931972
650 2 4 _aData Storage Representation.
_931576
710 2 _aSpringerLink (Online service)
_939395
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030410384
776 0 8 _iPrinted edition:
_z9783030410407
830 0 _aSpringerBriefs in Control, Automation and Robotics,
_x2192-6794
_939396
856 4 0 _uhttps://doi.org/10.1007/978-3-030-41039-1
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c76549
_d76549