000 03893nam a22005775i 4500
001 978-3-319-97499-6
003 DE-He213
005 20220801214929.0
007 cr nn 008mamaa
008 180809s2019 sz | s |||| 0|eng d
020 _a9783319974996
_9978-3-319-97499-6
024 7 _a10.1007/978-3-319-97499-6
_2doi
050 4 _aTA401-492
072 7 _aTNK
_2bicssc
072 7 _aTEC009020
_2bisacsh
072 7 _aTNK
_2thema
082 0 4 _a691
_223
100 1 _aDelgado, João M.P.Q.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_941315
245 1 0 _aThermal Energy Storage with Phase Change Materials
_h[electronic resource] :
_bA Literature Review of Applications for Buildings Materials /
_cby João M.P.Q. Delgado, Joana C. Martinho, Ana Vaz Sá, Ana S. Guimarães, Vitor Abrantes.
250 _a1st ed. 2019.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2019.
300 _aVIII, 73 p. 19 illus., 13 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Applied Sciences and Technology,
_x2191-5318
505 0 _aIntroduction -- Impregnation of PCMs in Building Materials -- PCM Current Applications and Thermal Performance -- Conclusions. .
520 _aThis short book provides an update on various methods for incorporating phase changing materials (PCMs) into building structures. It discusses previous research into optimizing the integration of PCMs into surrounding walls (gypsum board and interior plaster products), trombe walls, ceramic floor tiles, concrete elements (walls and pavements), windows, concrete and brick masonry, underfloor heating, ceilings, thermal insulation and furniture an indoor appliances. Based on the phase change state, PCMs fall into three groups: solid–solid PCMs, solid–liquid PCMs and liquid–gas PCMs. Of these the solid–liquid PCMs, which include organic PCMs, inorganic PCMs and eutectics, are suitable for thermal energy storage. The process of selecting an appropriate PCM is extremely complex, but crucial for thermal energy storage. The potential PCM should have a suitable melting temperature, and the desirable heat of fusion and thermal conductivity specified by the practical application. Thus, the methods of measuring the thermal properties of PCMs are key. With suitable PCMs and the correct incorporation method, latent heat thermal energy storage (LHTES) can be economically efficient for heating and cooling buildings. However, several problems need to be tackled before LHTES can reliably and practically be applied. .
650 0 _aBuilding materials.
_931878
650 0 _aCeramic materials.
_95542
650 0 _aSustainable architecture.
_97256
650 1 4 _aBuilding Materials.
_931878
650 2 4 _aCeramics.
_91984
650 2 4 _aSustainable Architecture/Green Buildings.
_932611
700 1 _aMartinho, Joana C.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_941316
700 1 _aVaz Sá, Ana.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_941317
700 1 _aGuimarães, Ana S.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_941318
700 1 _aAbrantes, Vitor.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_941319
710 2 _aSpringerLink (Online service)
_941320
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319974989
776 0 8 _iPrinted edition:
_z9783319975009
830 0 _aSpringerBriefs in Applied Sciences and Technology,
_x2191-5318
_941321
856 4 0 _uhttps://doi.org/10.1007/978-3-319-97499-6
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c76914
_d76914