000 | 03156nam a22005655i 4500 | ||
---|---|---|---|
001 | 978-3-319-98675-3 | ||
003 | DE-He213 | ||
005 | 20220801214930.0 | ||
007 | cr nn 008mamaa | ||
008 | 180823s2019 sz | s |||| 0|eng d | ||
020 |
_a9783319986753 _9978-3-319-98675-3 |
||
024 | 7 |
_a10.1007/978-3-319-98675-3 _2doi |
|
050 | 4 | _aR856-857 | |
072 | 7 |
_aMQW _2bicssc |
|
072 | 7 |
_aTEC059000 _2bisacsh |
|
072 | 7 |
_aMQW _2thema |
|
082 | 0 | 4 |
_a610.28 _223 |
100 | 1 |
_aPham, Thuy T. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _941329 |
|
245 | 1 | 0 |
_aApplying Machine Learning for Automated Classification of Biomedical Data in Subject-Independent Settings _h[electronic resource] / _cby Thuy T. Pham. |
250 | _a1st ed. 2019. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2019. |
|
300 |
_aXV, 107 p. 35 illus., 32 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSpringer Theses, Recognizing Outstanding Ph.D. Research, _x2190-5061 |
|
505 | 0 | _aIntroduction -- Background -- Algorithms -- Point Anomaly Detection: Application to Freezing of Gait Monitoring -- Collective Anomaly Detection: Application to Respiratory Artefact Removals -- Spike Sorting: Application to Motor Unit Action Potential Discrimination -- Conclusion . | |
520 | _aThis book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings. | ||
650 | 0 |
_aBiomedical engineering. _93292 |
|
650 | 0 |
_aData mining. _93907 |
|
650 | 0 |
_aComputational intelligence. _97716 |
|
650 | 0 |
_aBioinformatics. _99561 |
|
650 | 1 | 4 |
_aBiomedical Engineering and Bioengineering. _931842 |
650 | 2 | 4 |
_aData Mining and Knowledge Discovery. _941330 |
650 | 2 | 4 |
_aComputational Intelligence. _97716 |
650 | 2 | 4 |
_aBioinformatics. _99561 |
710 | 2 |
_aSpringerLink (Online service) _941331 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783319986746 |
776 | 0 | 8 |
_iPrinted edition: _z9783319986760 |
776 | 0 | 8 |
_iPrinted edition: _z9783030075187 |
830 | 0 |
_aSpringer Theses, Recognizing Outstanding Ph.D. Research, _x2190-5061 _941332 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-98675-3 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c76916 _d76916 |