000 03350nam a22005895i 4500
001 978-3-319-42664-8
003 DE-He213
005 20220801215101.0
007 cr nn 008mamaa
008 160917s2017 sz | s |||| 0|eng d
020 _a9783319426648
_9978-3-319-42664-8
024 7 _a10.1007/978-3-319-42664-8
_2doi
050 4 _aTA352-356
050 4 _aQC20.7.N6
072 7 _aTBJ
_2bicssc
072 7 _aGPFC
_2bicssc
072 7 _aTEC009000
_2bisacsh
072 7 _aTBJ
_2thema
072 7 _aGPFC
_2thema
082 0 4 _a515.39
_223
100 1 _aLuo, Albert C. J.
_eauthor.
_0(orcid)0000-0001-8208-6108
_1https://orcid.org/0000-0001-8208-6108
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_942248
245 1 0 _aPeriodic Flows to Chaos in Time-delay Systems
_h[electronic resource] /
_cby Albert C. J. Luo.
250 _a1st ed. 2017.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2017.
300 _aX, 198 p. 30 illus., 15 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aNonlinear Systems and Complexity,
_x2196-0003 ;
_v16
505 0 _aLinear Time-delay Systems -- Nonlinear Time-delay System -- Periodic Flows in Time-delay Systems -- Quasiperiodic Flows in Time-delay Systems -- Time-delay Duffing Oscillator.
520 _aThis book for the first time examines periodic motions to chaos in time-delay systems, which exist extensively in engineering. For a long time, the stability of time-delay systems at equilibrium has been of great interest from the Lyapunov theory-based methods, where one cannot achieve the ideal results. Thus, time-delay discretization in time-delay systems was used for the stability of these systems. In this volume, Dr. Luo presents an accurate method based on the finite Fourier series to determine periodic motions in nonlinear time-delay systems. The stability and bifurcation of periodic motions are determined by the time-delayed system of coefficients in the Fourier series and the method for nonlinear time-delay systems is equivalent to the Laplace transformation method for linear time-delay systems. Facilitates discovery of analytical solutions of nonlinear time-delay systems; Illustrates bifurcation trees of periodic motions to chaos; Helps readers identify motion complexity and singularity; Explains procedures for determining stability, bifurcation and chaos.
650 0 _aDynamics.
_942249
650 0 _aNonlinear theories.
_93339
650 0 _aSystem theory.
_93409
650 0 _aNonlinear Optics.
_911414
650 1 4 _aApplied Dynamical Systems.
_932005
650 2 4 _aComplex Systems.
_918136
650 2 4 _aNonlinear Optics.
_911414
710 2 _aSpringerLink (Online service)
_942250
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319426631
776 0 8 _iPrinted edition:
_z9783319426655
776 0 8 _iPrinted edition:
_z9783319826318
830 0 _aNonlinear Systems and Complexity,
_x2196-0003 ;
_v16
_942251
856 4 0 _uhttps://doi.org/10.1007/978-3-319-42664-8
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c77092
_d77092