000 | 03350nam a22005895i 4500 | ||
---|---|---|---|
001 | 978-3-319-42664-8 | ||
003 | DE-He213 | ||
005 | 20220801215101.0 | ||
007 | cr nn 008mamaa | ||
008 | 160917s2017 sz | s |||| 0|eng d | ||
020 |
_a9783319426648 _9978-3-319-42664-8 |
||
024 | 7 |
_a10.1007/978-3-319-42664-8 _2doi |
|
050 | 4 | _aTA352-356 | |
050 | 4 | _aQC20.7.N6 | |
072 | 7 |
_aTBJ _2bicssc |
|
072 | 7 |
_aGPFC _2bicssc |
|
072 | 7 |
_aTEC009000 _2bisacsh |
|
072 | 7 |
_aTBJ _2thema |
|
072 | 7 |
_aGPFC _2thema |
|
082 | 0 | 4 |
_a515.39 _223 |
100 | 1 |
_aLuo, Albert C. J. _eauthor. _0(orcid)0000-0001-8208-6108 _1https://orcid.org/0000-0001-8208-6108 _4aut _4http://id.loc.gov/vocabulary/relators/aut _942248 |
|
245 | 1 | 0 |
_aPeriodic Flows to Chaos in Time-delay Systems _h[electronic resource] / _cby Albert C. J. Luo. |
250 | _a1st ed. 2017. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2017. |
|
300 |
_aX, 198 p. 30 illus., 15 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aNonlinear Systems and Complexity, _x2196-0003 ; _v16 |
|
505 | 0 | _aLinear Time-delay Systems -- Nonlinear Time-delay System -- Periodic Flows in Time-delay Systems -- Quasiperiodic Flows in Time-delay Systems -- Time-delay Duffing Oscillator. | |
520 | _aThis book for the first time examines periodic motions to chaos in time-delay systems, which exist extensively in engineering. For a long time, the stability of time-delay systems at equilibrium has been of great interest from the Lyapunov theory-based methods, where one cannot achieve the ideal results. Thus, time-delay discretization in time-delay systems was used for the stability of these systems. In this volume, Dr. Luo presents an accurate method based on the finite Fourier series to determine periodic motions in nonlinear time-delay systems. The stability and bifurcation of periodic motions are determined by the time-delayed system of coefficients in the Fourier series and the method for nonlinear time-delay systems is equivalent to the Laplace transformation method for linear time-delay systems. Facilitates discovery of analytical solutions of nonlinear time-delay systems; Illustrates bifurcation trees of periodic motions to chaos; Helps readers identify motion complexity and singularity; Explains procedures for determining stability, bifurcation and chaos. | ||
650 | 0 |
_aDynamics. _942249 |
|
650 | 0 |
_aNonlinear theories. _93339 |
|
650 | 0 |
_aSystem theory. _93409 |
|
650 | 0 |
_aNonlinear Optics. _911414 |
|
650 | 1 | 4 |
_aApplied Dynamical Systems. _932005 |
650 | 2 | 4 |
_aComplex Systems. _918136 |
650 | 2 | 4 |
_aNonlinear Optics. _911414 |
710 | 2 |
_aSpringerLink (Online service) _942250 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783319426631 |
776 | 0 | 8 |
_iPrinted edition: _z9783319426655 |
776 | 0 | 8 |
_iPrinted edition: _z9783319826318 |
830 | 0 |
_aNonlinear Systems and Complexity, _x2196-0003 ; _v16 _942251 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-42664-8 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c77092 _d77092 |