000 | 03413nam a22006375i 4500 | ||
---|---|---|---|
001 | 978-3-319-53208-0 | ||
003 | DE-He213 | ||
005 | 20220801215204.0 | ||
007 | cr nn 008mamaa | ||
008 | 170225s2017 sz | s |||| 0|eng d | ||
020 |
_a9783319532080 _9978-3-319-53208-0 |
||
024 | 7 |
_a10.1007/978-3-319-53208-0 _2doi |
|
050 | 4 | _aTA342-343 | |
072 | 7 |
_aPBWH _2bicssc |
|
072 | 7 |
_aTBJ _2bicssc |
|
072 | 7 |
_aMAT003000 _2bisacsh |
|
072 | 7 |
_aPBWH _2thema |
|
072 | 7 |
_aTBJ _2thema |
|
082 | 0 | 4 |
_a003.3 _223 |
100 | 1 |
_aLiu, Xinzhi. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _942868 |
|
245 | 1 | 0 |
_aInfectious Disease Modeling _h[electronic resource] : _bA Hybrid System Approach / _cby Xinzhi Liu, Peter Stechlinski. |
250 | _a1st ed. 2017. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2017. |
|
300 |
_aXVI, 271 p. 72 illus., 67 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aNonlinear Systems and Complexity, _x2196-0003 ; _v19 |
|
505 | 0 | _aIntroduction -- Modelling the Spread of an Infectious Disease -- Hybrid Epidemic Models -- Control Strategies for Eradication -- Discussions and Conclusions -- References -- Appendix. | |
520 | _aThis volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes. | ||
650 | 0 |
_aMathematical models. _94632 |
|
650 | 0 |
_aDiseases. _941350 |
|
650 | 0 |
_aDynamics. _942869 |
|
650 | 0 |
_aNonlinear theories. _93339 |
|
650 | 0 |
_aNonlinear Optics. _911414 |
|
650 | 0 |
_aEpidemiology. _942870 |
|
650 | 1 | 4 |
_aMathematical Modeling and Industrial Mathematics. _933097 |
650 | 2 | 4 |
_aDiseases. _941350 |
650 | 2 | 4 |
_aApplied Dynamical Systems. _932005 |
650 | 2 | 4 |
_aNonlinear Optics. _911414 |
650 | 2 | 4 |
_aEpidemiology. _942870 |
700 | 1 |
_aStechlinski, Peter. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _942871 |
|
710 | 2 |
_aSpringerLink (Online service) _942872 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783319532066 |
776 | 0 | 8 |
_iPrinted edition: _z9783319532073 |
776 | 0 | 8 |
_iPrinted edition: _z9783319850900 |
830 | 0 |
_aNonlinear Systems and Complexity, _x2196-0003 ; _v19 _942873 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-53208-0 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c77208 _d77208 |