000 03413nam a22006375i 4500
001 978-3-319-53208-0
003 DE-He213
005 20220801215204.0
007 cr nn 008mamaa
008 170225s2017 sz | s |||| 0|eng d
020 _a9783319532080
_9978-3-319-53208-0
024 7 _a10.1007/978-3-319-53208-0
_2doi
050 4 _aTA342-343
072 7 _aPBWH
_2bicssc
072 7 _aTBJ
_2bicssc
072 7 _aMAT003000
_2bisacsh
072 7 _aPBWH
_2thema
072 7 _aTBJ
_2thema
082 0 4 _a003.3
_223
100 1 _aLiu, Xinzhi.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_942868
245 1 0 _aInfectious Disease Modeling
_h[electronic resource] :
_bA Hybrid System Approach /
_cby Xinzhi Liu, Peter Stechlinski.
250 _a1st ed. 2017.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2017.
300 _aXVI, 271 p. 72 illus., 67 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aNonlinear Systems and Complexity,
_x2196-0003 ;
_v19
505 0 _aIntroduction -- Modelling the Spread of an Infectious Disease -- Hybrid Epidemic Models -- Control Strategies for Eradication -- Discussions and Conclusions -- References -- Appendix.
520 _aThis volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.
650 0 _aMathematical models.
_94632
650 0 _aDiseases.
_941350
650 0 _aDynamics.
_942869
650 0 _aNonlinear theories.
_93339
650 0 _aNonlinear Optics.
_911414
650 0 _aEpidemiology.
_942870
650 1 4 _aMathematical Modeling and Industrial Mathematics.
_933097
650 2 4 _aDiseases.
_941350
650 2 4 _aApplied Dynamical Systems.
_932005
650 2 4 _aNonlinear Optics.
_911414
650 2 4 _aEpidemiology.
_942870
700 1 _aStechlinski, Peter.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_942871
710 2 _aSpringerLink (Online service)
_942872
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319532066
776 0 8 _iPrinted edition:
_z9783319532073
776 0 8 _iPrinted edition:
_z9783319850900
830 0 _aNonlinear Systems and Complexity,
_x2196-0003 ;
_v19
_942873
856 4 0 _uhttps://doi.org/10.1007/978-3-319-53208-0
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c77208
_d77208