000 | 03948nam a22006255i 4500 | ||
---|---|---|---|
001 | 978-981-13-9382-2 | ||
003 | DE-He213 | ||
005 | 20220801215421.0 | ||
007 | cr nn 008mamaa | ||
008 | 200603s2020 si | s |||| 0|eng d | ||
020 |
_a9789811393822 _9978-981-13-9382-2 |
||
024 | 7 |
_a10.1007/978-981-13-9382-2 _2doi |
|
050 | 4 | _aTS1-2301 | |
072 | 7 |
_aTGP _2bicssc |
|
072 | 7 |
_aTEC020000 _2bisacsh |
|
072 | 7 |
_aTGP _2thema |
|
082 | 0 | 4 |
_a670 _223 |
100 | 1 |
_aVendan, S. Arungalai. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _944239 |
|
245 | 1 | 0 |
_aWelding and Cutting Case Studies with Supervised Machine Learning _h[electronic resource] / _cby S. Arungalai Vendan, Rajeev Kamal, Abhinav Karan, Liang Gao, Xiaodong Niu, Akhil Garg. |
250 | _a1st ed. 2020. | ||
264 | 1 |
_aSingapore : _bSpringer Nature Singapore : _bImprint: Springer, _c2020. |
|
300 |
_aIX, 249 p. 257 illus., 192 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aEngineering Applications of Computational Methods, _x2662-3374 ; _v1 |
|
505 | 0 | _aSupervised machine learning in magnetically impelled arc butt welding (MIAB) -- Supervised machine learning in cold metal transfer (CMT) -- Supervised machine learning in friction stir welding (FSW) -- Supervised machine learning in wire cut electric discharge maching (WEDM) -- Appendix: coding in python, numpy, panda, scikit-learn used for analysis with emphasis on libraries. | |
520 | _aThis book presents machine learning as a set of pre-requisites, co-requisites, and post-requisites, focusing on mathematical concepts and engineering applications in advanced welding and cutting processes. It describes a number of advanced welding and cutting processes and then assesses the parametrical interdependencies of two entities, namely the data analysis and data visualization techniques, which form the core of machine learning. Subsequently, it discusses supervised learning, highlighting Python libraries such as NumPy, Pandas and Scikit Learn programming. It also includes case studies that employ machine learning for manufacturing processes in the engineering domain. The book not only provides beginners with an introduction to machine learning for applied sciences, enabling them to address global competitiveness and work on real-time technical challenges, it is also a valuable resource for scholars with domain knowledge. | ||
650 | 0 |
_aManufactures. _931642 |
|
650 | 0 |
_aMachine learning. _91831 |
|
650 | 0 |
_aEngineering—Data processing. _931556 |
|
650 | 0 |
_aMaterials—Analysis. _944240 |
|
650 | 1 | 4 |
_aMachines, Tools, Processes. _931645 |
650 | 2 | 4 |
_aMachine Learning. _91831 |
650 | 2 | 4 |
_aData Engineering. _932525 |
650 | 2 | 4 |
_aCharacterization and Analytical Technique. _944241 |
700 | 1 |
_aKamal, Rajeev. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _944242 |
|
700 | 1 |
_aKaran, Abhinav. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _944243 |
|
700 | 1 |
_aGao, Liang. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _944244 |
|
700 | 1 |
_aNiu, Xiaodong. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _944245 |
|
700 | 1 |
_aGarg, Akhil. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _944246 |
|
710 | 2 |
_aSpringerLink (Online service) _944247 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9789811393815 |
776 | 0 | 8 |
_iPrinted edition: _z9789811393839 |
776 | 0 | 8 |
_iPrinted edition: _z9789811393846 |
830 | 0 |
_aEngineering Applications of Computational Methods, _x2662-3374 ; _v1 _944248 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-981-13-9382-2 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c77468 _d77468 |