000 03738nam a22006135i 4500
001 978-3-319-28764-5
003 DE-He213
005 20220801215633.0
007 cr nn 008mamaa
008 160422s2016 sz | s |||| 0|eng d
020 _a9783319287645
_9978-3-319-28764-5
024 7 _a10.1007/978-3-319-28764-5
_2doi
050 4 _aTA352-356
050 4 _aQC20.7.N6
072 7 _aTBJ
_2bicssc
072 7 _aGPFC
_2bicssc
072 7 _aTEC009000
_2bisacsh
072 7 _aTBJ
_2thema
072 7 _aGPFC
_2thema
082 0 4 _a515.39
_223
245 1 0 _aComplex Motions and Chaos in Nonlinear Systems
_h[electronic resource] /
_cedited by Valentin Afraimovich, José António Tenreiro Machado, Jiazhong Zhang.
250 _a1st ed. 2016.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2016.
300 _aVIII, 276 p. 40 illus., 37 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aNonlinear Systems and Complexity,
_x2196-0003 ;
_v15
505 0 _aChapter 1 Detection of the Quasi-Periodic Processes in Experimental Measurements: Reduction to an "ideal experiment -- Chapter 2 Some Singularities in Fluid Dynamics and Their Bifurcation Analysis -- Chapter 3 Finite Element Analysis of the Nonlinear Fluid-Membrane Interactions Using a Modified Characteristic-Based Split (CBS) Scheme -- Chapter 4 Lock-in behaviors of an airfoil with local excitation in low Reynolds number flow -- Chapter 5 Plasma flow control: progress and problems -- Chapter 6 Hidden dimensions in an Hamiltonian system on networks -- Chapter 7 Input-Output Mechanism of the Discrete Chaos Extension -- Chapter 8 : Steady state solution for a Rayleigh’s piston in a temperature gradient -- Chapter 9 Analytical period-m motions in a parametric, quadratic nonlinear oscillator -- Chapter 10 Period-m motions to chaos in the Duffing oscillator via a discretization technique.
520 _aThis book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
650 0 _aDynamics.
_945566
650 0 _aNonlinear theories.
_93339
650 0 _aFluid mechanics.
_92810
650 0 _aNonlinear Optics.
_911414
650 1 4 _aApplied Dynamical Systems.
_932005
650 2 4 _aEngineering Fluid Dynamics.
_945567
650 2 4 _aNonlinear Optics.
_911414
700 1 _aAfraimovich, Valentin.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_945568
700 1 _aMachado, José António Tenreiro.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_945569
700 1 _aZhang, Jiazhong.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_945570
710 2 _aSpringerLink (Online service)
_945571
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319287621
776 0 8 _iPrinted edition:
_z9783319287638
776 0 8 _iPrinted edition:
_z9783319804187
830 0 _aNonlinear Systems and Complexity,
_x2196-0003 ;
_v15
_945572
856 4 0 _uhttps://doi.org/10.1007/978-3-319-28764-5
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c77701
_d77701