000 03668nam a22006615i 4500
001 978-3-030-51977-3
003 DE-He213
005 20220801215804.0
007 cr nn 008mamaa
008 200925s2021 sz | s |||| 0|eng d
020 _a9783030519773
_9978-3-030-51977-3
024 7 _a10.1007/978-3-030-51977-3
_2doi
050 4 _aTA352-356
050 4 _aQC20.7.N6
072 7 _aTBJ
_2bicssc
072 7 _aGPFC
_2bicssc
072 7 _aTEC009000
_2bisacsh
072 7 _aTBJ
_2thema
072 7 _aGPFC
_2thema
082 0 4 _a515.39
_223
100 1 _aFriedrich, Jan.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_946461
245 1 0 _aNon-perturbative Methods in Statistical Descriptions of Turbulence
_h[electronic resource] /
_cby Jan Friedrich.
250 _a1st ed. 2021.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2021.
300 _aXI, 164 p. 53 illus., 11 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgress in Turbulence - Fundamentals and Applications,
_x2661-8176 ;
_v1
505 0 _aIntroduction -- Basic Properties of Hydrodynamic Turbulence -- Statistical Formulation of the Problem of Turbulence -- Overview of Closure Methods for the Closure Problem of Turbulence -- Non-Perturbative Methods -- Outlook.
520 _aThis book provides a comprehensive overview of statistical descriptions of turbulent flows. Its main objectives are to point out why ordinary perturbative treatments of the Navier–Stokes equation have been rather futile, and to present recent advances in non-perturbative treatments, e.g., the instanton method and a stochastic interpretation of turbulent energy transfer. After a brief introduction to the basic equations of turbulent fluid motion, the book outlines a probabilistic treatment of the Navier–Stokes equation and chiefly focuses on the emergence of a multi-point hierarchy and the notion of the closure problem of turbulence. Furthermore, empirically observed multiscaling features and their impact on possible closure methods are discussed, and each is put into the context of its original field of use, e.g., the renormalization group method is addressed in relation to the theory of critical phenomena. The intended readership consists of physicists and engineers who want to get acquainted with the prevalent concepts and methods in this research area.
650 0 _aDynamics.
_946462
650 0 _aNonlinear theories.
_93339
650 0 _aMultibody systems.
_96018
650 0 _aVibration.
_96645
650 0 _aMechanics, Applied.
_93253
650 0 _aNonlinear Optics.
_911414
650 0 _aFluid mechanics.
_92810
650 0 _aContinuum mechanics.
_93467
650 1 4 _aApplied Dynamical Systems.
_932005
650 2 4 _aMultibody Systems and Mechanical Vibrations.
_932157
650 2 4 _aNonlinear Optics.
_911414
650 2 4 _aEngineering Fluid Dynamics.
_946463
650 2 4 _aContinuum Mechanics.
_93467
710 2 _aSpringerLink (Online service)
_946464
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030519766
776 0 8 _iPrinted edition:
_z9783030519780
776 0 8 _iPrinted edition:
_z9783030519797
830 0 _aProgress in Turbulence - Fundamentals and Applications,
_x2661-8176 ;
_v1
_946465
856 4 0 _uhttps://doi.org/10.1007/978-3-030-51977-3
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c77864
_d77864