000 | 04265nam a22006015i 4500 | ||
---|---|---|---|
001 | 978-3-319-26883-5 | ||
003 | DE-He213 | ||
005 | 20220801221616.0 | ||
007 | cr nn 008mamaa | ||
008 | 160128s2016 sz | s |||| 0|eng d | ||
020 |
_a9783319268835 _9978-3-319-26883-5 |
||
024 | 7 |
_a10.1007/978-3-319-26883-5 _2doi |
|
050 | 4 | _aTA349-359 | |
072 | 7 |
_aTGMD _2bicssc |
|
072 | 7 |
_aSCI096000 _2bisacsh |
|
072 | 7 |
_aTGMD _2thema |
|
082 | 0 | 4 |
_a620.105 _223 |
245 | 1 | 0 |
_aMacroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity _h[electronic resource] / _cedited by Adrian Muntean, Jens D. M. Rademacher, Antonios Zagaris. |
250 | _a1st ed. 2016. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2016. |
|
300 |
_aXIII, 295 p. 15 illus., 13 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Applied Mathematics and Mechanics, _x2197-6732 ; _v3 |
|
505 | 0 | _aIntroduction -- Continuum Limits of Discrete Models via G -Convergence -- On Evolutionary G -convergence for Gradient Systems -- Homoclinic Points of Principal Algebraic Actions. | |
520 | _aThis book is the offspring of a summer school school “Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity”, which was held in 2012 at the University of Twente, the Netherlands. The focus lies on mathematically rigorous methods for multiscale problems of physical origins. Each of the four book chapters is based on a set of lectures delivered at the school, yet all authors have expanded and refined their contributions. Francois Golse delivers a chapter on the dynamics of large particle systems in the mean field limit and surveys the most significant tools and methods to establish such limits with mathematical rigor. Golse discusses in depth a variety of examples, including Vlasov--Poisson and Vlasov--Maxwell systems. Lucia Scardia focuses on the rigorous derivation of macroscopic models using $\Gamma$-convergence, a more recent variational method, which has proved very powerful for problems in material science. Scardia illustrates this by various basic examples and a more advanced case study from dislocation theory. Alexander Mielke's contribution focuses on the multiscale modeling and rigorous analysis of generalized gradient systems through the new concept of evolutionary $\Gamma$-convergence. Numerous evocative examples are given, e.g., relating to periodic homogenization and the passage from viscous to dry friction. Martin Göll and Evgeny Verbitskiy conclude this volume, taking a dynamical systems and ergodic theory viewpoint. They review recent developments in the study of homoclinic points for certain discrete dynamical systems, relating to particle systems via ergodic properties of lattices configurations. | ||
650 | 0 |
_aMechanics, Applied. _93253 |
|
650 | 0 |
_aSolids. _93750 |
|
650 | 0 |
_aMathematics. _911584 |
|
650 | 0 |
_aEngineering mathematics. _93254 |
|
650 | 0 |
_aEngineering—Data processing. _931556 |
|
650 | 0 |
_aDynamical systems. _956990 |
|
650 | 1 | 4 |
_aSolid Mechanics. _931612 |
650 | 2 | 4 |
_aApplications of Mathematics. _931558 |
650 | 2 | 4 |
_aMathematical and Computational Engineering Applications. _931559 |
650 | 2 | 4 |
_aDynamical Systems. _956991 |
700 | 1 |
_aMuntean, Adrian. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _956992 |
|
700 | 1 |
_aRademacher, Jens D. M. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _956993 |
|
700 | 1 |
_aZagaris, Antonios. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _956994 |
|
710 | 2 |
_aSpringerLink (Online service) _956995 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783319268828 |
776 | 0 | 8 |
_iPrinted edition: _z9783319268842 |
830 | 0 |
_aLecture Notes in Applied Mathematics and Mechanics, _x2197-6732 ; _v3 _956996 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-26883-5 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c79855 _d79855 |