000 03470nam a22005415i 4500
001 978-3-319-51475-8
003 DE-He213
005 20220801221708.0
007 cr nn 008mamaa
008 170113s2017 sz | s |||| 0|eng d
020 _a9783319514758
_9978-3-319-51475-8
024 7 _a10.1007/978-3-319-51475-8
_2doi
050 4 _aQ342
072 7 _aUYQ
_2bicssc
072 7 _aTEC009000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
100 1 _aAnastassiou, George A.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_957466
245 1 0 _aIntelligent Comparisons II: Operator Inequalities and Approximations
_h[electronic resource] /
_cby George A. Anastassiou.
250 _a1st ed. 2017.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2017.
300 _aXII, 224 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aStudies in Computational Intelligence,
_x1860-9503 ;
_v699
505 0 _aPreface -- Self Adjoint Operator Korovkin type Quantitative Approximation Theory -- Self Adjoint Operator Korovkin and polynomial direct Approximations with rates -- Quantitative Self Adjoint Operator other Direct Approximations -- Fractional Self Adjoint Operator Poincare and Sobolev Inequalities -- Self Adjoint Operator Ostrowski Inequalities -- Integer and Fractional Self Adjoint Operator Opial Inequalities -- Self Adjoint Operator Chebyshev-Gruss Inequalities -- Ultra General Fractional Self Adjoint Operator Representation formulae and Operator Poincare and Sobolev and other basic Inequalities -- Harmonic Self Adjoint Operator Chebyshev-Gruss type Inequalities -- Ultra general Self Adjoint Operator Chebyshev-Gruss type Inequalities -- About a fractional Means inequality.
520 _aThis compact book focuses on self-adjoint operators’ well-known named inequalities and Korovkin approximation theory, both in a Hilbert space environment. It is the first book to study these aspects, and all chapters are self-contained and can be read independently. Further, each chapter includes an extensive list of references for further reading. The book’s results are expected to find applications in many areas of pure and applied mathematics. Given its concise format, it is especially suitable for use in related graduate classes and research projects. As such, the book offers a valuable resource for researchers and graduate students alike, as well as a key addition to all science and engineering libraries.
650 0 _aComputational intelligence.
_97716
650 0 _aArtificial intelligence.
_93407
650 0 _aApproximation theory.
_98253
650 1 4 _aComputational Intelligence.
_97716
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aApproximations and Expansions.
_954382
710 2 _aSpringerLink (Online service)
_957467
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319514741
776 0 8 _iPrinted edition:
_z9783319514765
776 0 8 _iPrinted edition:
_z9783319846606
830 0 _aStudies in Computational Intelligence,
_x1860-9503 ;
_v699
_957468
856 4 0 _uhttps://doi.org/10.1007/978-3-319-51475-8
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c79948
_d79948