000 | 04546nam a22006855i 4500 | ||
---|---|---|---|
001 | 978-3-319-54024-5 | ||
003 | DE-He213 | ||
005 | 20220801221935.0 | ||
007 | cr nn 008mamaa | ||
008 | 170509s2017 sz | s |||| 0|eng d | ||
020 |
_a9783319540245 _9978-3-319-54024-5 |
||
024 | 7 |
_a10.1007/978-3-319-54024-5 _2doi |
|
050 | 4 | _aQA76.9.D343 | |
072 | 7 |
_aUNF _2bicssc |
|
072 | 7 |
_aUYQE _2bicssc |
|
072 | 7 |
_aCOM021030 _2bisacsh |
|
072 | 7 |
_aUNF _2thema |
|
072 | 7 |
_aUYQE _2thema |
|
082 | 0 | 4 |
_a006.312 _223 |
245 | 1 | 0 |
_aTransparent Data Mining for Big and Small Data _h[electronic resource] / _cedited by Tania Cerquitelli, Daniele Quercia, Frank Pasquale. |
250 | _a1st ed. 2017. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2017. |
|
300 |
_aXV, 215 p. 23 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aStudies in Big Data, _x2197-6511 ; _v32 |
|
505 | 0 | _aPart I: Transparent Mining -- Chapter 1: The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good -- Chapter 2: Enabling Accountability of Algorithmic Media: Transparency as a Constructive and Critical Lens -- Chapter 3: The Princeton Web Transparency and Accountability Project -- Part II: Algorithmic solutions -- Chapter 4: Algorithmic Transparency via Quantitative Input Influence -- Chapter 5 -- Learning Interpretable Classification Rules with Boolean Compressed Sensing -- Chapter 6: Visualizations of Deep Neural Networks in Computer Vision: A Survey -- Part III: Regulatory solutions -- Chapter 7: Beyond the EULA: Improving Consent for Data Mining -- Chapter 8: Regulating Algorithms Regulation? First Ethico-legal Principles, Problems and Opportunities of Algorithms -- Chapter 9: Algorithm Watch: What Role Can a Watchdog Organization Play in Ensuring Algorithmic Accountability? | |
520 | _aThis book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches. As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use. | ||
650 | 0 |
_aData mining. _93907 |
|
650 | 0 |
_aInformation technology—Law and legislation. _948877 |
|
650 | 0 |
_aMass media—Law and legislation. _948878 |
|
650 | 0 |
_aAlgorithms. _93390 |
|
650 | 0 |
_aDynamics. _958827 |
|
650 | 0 |
_aNonlinear theories. _93339 |
|
650 | 0 |
_aComputer simulation. _95106 |
|
650 | 0 |
_aQuantitative research. _94633 |
|
650 | 1 | 4 |
_aData Mining and Knowledge Discovery. _958828 |
650 | 2 | 4 |
_aIT Law, Media Law, Intellectual Property. _948879 |
650 | 2 | 4 |
_aAlgorithms. _93390 |
650 | 2 | 4 |
_aApplied Dynamical Systems. _932005 |
650 | 2 | 4 |
_aComputer Modelling. _958829 |
650 | 2 | 4 |
_aData Analysis and Big Data. _958830 |
700 | 1 |
_aCerquitelli, Tania. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _958831 |
|
700 | 1 |
_aQuercia, Daniele. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _958832 |
|
700 | 1 |
_aPasquale, Frank. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _958833 |
|
710 | 2 |
_aSpringerLink (Online service) _958834 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783319540238 |
776 | 0 | 8 |
_iPrinted edition: _z9783319540252 |
776 | 0 | 8 |
_iPrinted edition: _z9783319852997 |
830 | 0 |
_aStudies in Big Data, _x2197-6511 ; _v32 _958835 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-54024-5 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c80224 _d80224 |