000 | 03298nam a22005775i 4500 | ||
---|---|---|---|
001 | 978-981-10-0631-9 | ||
003 | DE-He213 | ||
005 | 20220801222446.0 | ||
007 | cr nn 008mamaa | ||
008 | 160224s2016 si | s |||| 0|eng d | ||
020 |
_a9789811006319 _9978-981-10-0631-9 |
||
024 | 7 |
_a10.1007/978-981-10-0631-9 _2doi |
|
050 | 4 | _aTK5102.9 | |
072 | 7 |
_aTJF _2bicssc |
|
072 | 7 |
_aUYS _2bicssc |
|
072 | 7 |
_aTEC008000 _2bisacsh |
|
072 | 7 |
_aTJF _2thema |
|
072 | 7 |
_aUYS _2thema |
|
082 | 0 | 4 |
_a621.382 _223 |
100 | 1 |
_aChen, Chen. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _961599 |
|
245 | 1 | 0 |
_aBig Visual Data Analysis _h[electronic resource] : _bScene Classification and Geometric Labeling / _cby Chen Chen, Yuzhuo Ren, C.-C. Jay Kuo. |
250 | _a1st ed. 2016. | ||
264 | 1 |
_aSingapore : _bSpringer Nature Singapore : _bImprint: Springer, _c2016. |
|
300 |
_aX, 122 p. 94 illus., 12 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSpringerBriefs in Signal Processing, _x2196-4084 |
|
505 | 0 | _aIntroduction -- Scene Understanding Datasets -- Indoor/Outdoor classification with Multiple Experts -- Outdoor Scene Classification Using Labeled Segments -- Global-Attributes Assisted Outdoor Scene Geometric Labeling -- Conclusion and Future Work. | |
520 | _aThis book offers an overview of traditional big visual data analysis approaches and provides state-of-the-art solutions for several scene comprehension problems, indoor/outdoor classification, outdoor scene classification, and outdoor scene layout estimation. It is illustrated with numerous natural and synthetic color images, and extensive statistical analysis is provided to help readers visualize big visual data distribution and the associated problems. Although there has been some research on big visual data analysis, little work has been published on big image data distribution analysis using the modern statistical approach described in this book. By presenting a complete methodology on big visual data analysis with three illustrative scene comprehension problems, it provides a generic framework that can be applied to other big visual data analysis tasks. | ||
650 | 0 |
_aSignal processing. _94052 |
|
650 | 0 |
_aComputer vision. _961600 |
|
650 | 0 |
_aInformation visualization. _914255 |
|
650 | 1 | 4 |
_aSignal, Speech and Image Processing . _931566 |
650 | 2 | 4 |
_aComputer Vision. _961601 |
650 | 2 | 4 |
_aData and Information Visualization. _933848 |
700 | 1 |
_aRen, Yuzhuo. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _961602 |
|
700 | 1 |
_aKuo, C.-C. Jay. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _961603 |
|
710 | 2 |
_aSpringerLink (Online service) _961604 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9789811006296 |
776 | 0 | 8 |
_iPrinted edition: _z9789811006302 |
830 | 0 |
_aSpringerBriefs in Signal Processing, _x2196-4084 _961605 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-981-10-0631-9 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c80790 _d80790 |