000 07884cam a2200949 i 4500
001 ocn949276252
003 OCoLC
005 20220908100111.0
006 m o d
007 cr cnu---unuuu
008 160510s2016 nju ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dIDEBK
_dYDXCP
_dJSTOR
_dEBLCP
_dCDX
_dDEBBG
_dCOCUF
_dLOA
_dMERUC
_dK6U
_dOCLCQ
_dCUY
_dZCU
_dEZ9
_dWRM
_dSTF
_dOCLCO
_dOCLCQ
_dICG
_dVT2
_dOCLCQ
_dWYU
_dOCLCO
_dLVT
_dTKN
_dDKC
_dOCLCQ
_dUKAHL
_dUX1
_dCEF
_dHS0
_dSFB
_dADU
_dOCLCQ
_dYDX
_dUKCRE
_dVLY
_dSNK
_dESU
_dSXB
_dMM9
_dS2H
_dSDF
_dTUHNV
_dREDDC
_dIEEEE
_dUEJ
_dOCLCQ
_dOCLCO
_dFAU
_dLUU
_dSHC
066 _cGrek
_c(S
019 _a1055344533
_a1066600074
_a1228557265
020 _a9781400881246
_q(electronic bk.)
020 _a1400881242
_q(electronic bk.)
020 _z9780691170541
020 _z0691170541
020 _z9780691170558
020 _z069117055X
029 1 _aAU@
_b000060429874
029 1 _aCHBIS
_b010896085
029 1 _aCHVBK
_b483398047
029 1 _aDEBBG
_bBV043979302
029 1 _aGBVCP
_b875860702
035 _a(OCoLC)949276252
_z(OCoLC)1055344533
_z(OCoLC)1066600074
_z(OCoLC)1228557265
037 _a22573/ctt194t8sv
_bJSTOR
037 _a9452407
_bIEEE
050 4 _aQA571
_b.I37 2016eb
072 7 _aMAT
_x012000
_2bisacsh
072 7 _aMAT012000
_2bisacsh
072 7 _aMAT038000
_2bisacsh
072 7 _aMAT000000
_2bisacsh
072 7 _aMAT034000
_2bisacsh
072 7 _aMAT012010
_2bisacsh
082 0 4 _a516.3/52
_223
084 _aSI 830
_2rvk
049 _aMAIN
100 1 _aIkromov, Isroil A.,
_d1961-
_eauthor.
_964759
245 1 0 _aFourier restriction for hypersurfaces in three dimensions and Newton polyhedra /
_cIsroil A. Ikromov and Detlef M�uller.
264 1 _aPrinceton :
_bPrinceton University Press,
_c[2016]
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aAnnals of mathematics studies ;
_vnumber 194
504 _aIncludes bibliographical references and index.
588 0 _aPrint version record.
505 0 0 _6880-01
_tFrontmatter --
_tContents --
_tChapter 1. Introduction --
_tChapter 2. Auxiliary Results --
_tChapter 3. Reduction to Restriction Estimates near the Principal Root Jet --
_tChapter 4. Restriction for Surfaces with Linear Height below 2 --
_tChapter 5. Improved Estimates by Means of Airy-Type Analysis --
_tChapter 6. The Case When h --
_tChapter 7. How to Go beyond the Case h --
_tChapter 8. The Remaining Cases Where m = 2 and B = 3 or B = 4 --
_tChapter 9. Proofs of Propositions 1.7 and 1.17 --
_tBibliography --
_tIndex.
520 _aThis is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef M�uller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and M�uller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept. They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
590 _aIEEE
_bIEEE Xplore Princeton University Press eBooks Library
650 0 _aHypersurfaces.
_964760
650 0 _aPolyhedra.
_964761
650 0 _aSurfaces, Algebraic.
_964762
650 0 _aFourier analysis.
_96642
650 2 _aFourier Analysis
_96642
650 6 _aHypersurfaces.
_964760
650 6 _aPoly�edres.
_964763
650 6 _aSurfaces alg�ebriques.
_964764
650 6 _aAnalyse de Fourier.
_964765
650 7 _apolyhedra.
_2aat
_964766
650 7 _aMATHEMATICS
_xGeometry
_xGeneral.
_2bisacsh
_97661
650 7 _aFourier analysis.
_2fast
_0(OCoLC)fst00933401
_96642
650 7 _aHypersurfaces.
_2fast
_0(OCoLC)fst00965830
_964760
650 7 _aPolyhedra.
_2fast
_0(OCoLC)fst01070511
_964761
650 7 _aSurfaces, Algebraic.
_2fast
_0(OCoLC)fst01139295
_964762
655 0 _aElectronic books.
_93294
655 4 _aElectronic books.
_93294
700 1 _aM�uller, Detlef,
_d1954-
_eauthor.
_964767
776 0 8 _iPrint version:
_aIkromov, Isroil A., 1961-
_tFourier restriction for hypersurfaces in three dimensions and Newton polyhedra.
_dPrinceton : Princeton University Press, [2016]
_z9780691170541
_w(DLC) 2015041649
_w(OCoLC)926820349
830 0 _aAnnals of mathematics studies ;
_vno. 194.
_964768
856 4 0 _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9452407
880 0 _6505-01/Grek
_aCover -- Title -- Copyright -- Dedication -- Contents -- Chapter 1 Introduction -- 1.1 Newton Polyhedra Associated with &#x03D5;, Adapted Coordinates, and Uniform Estimates for Oscillatory Integrals with Phase &#x03D5; -- 1.2 Fourier Restriction in the Presence of a Linear Coordinate System That Is Adapted to &#x03D5; -- 1.3 Fourier Restriction When No Linear Coordinate System Is Adapted to &#x03D5;-the Analytic Case -- 1.4 Smooth Hypersurfaces of Finite Type, Condition (R), and the General Restriction Theorem -- 1.5 An Invariant Description of the Notion of r-Height. -- 1.6 Organization of the Monograph and Strategy of Proof -- Chapter 2 Auxiliary Results -- 2.1 Van der Corput-Type Estimates -- 2.2 Airy-Type Integrals -- 2.3 Integral Estimates of van der Corput Type -- 2.4 Fourier Restriction via Real Interpolation -- 2.5 Uniform Estimates for Families of Oscillatory Sums -- 2.6 Normal Forms of &#x03D5; under Linear Coordinate Changes When hlin(&#x03D5;) <2 -- Chapter 3 Reduction to Restriction Estimates near the Principal Root Jet -- Chapter 4 Restriction for Surfaces with Linear Height below 2 -- 4.1 Preliminary Reductions by Means of Littlewood-Paley Decompositions -- 4.2 Restriction Estimates for Normalized Rescaled Measures When 2^2j (Se(B3 &#x2272; 1 -- Chapter 5 Improved Estimates by Means of Airy-Type Analysis -- 5.1 Airy-Type Decompositions Required for Proposition 4.2(c) -- 5.2 The Endpoint in Proposition 4.2(c): Complex Interpolation -- 5.3 Proof of Proposition 4.2(a), (b): Complex Interpolation -- Chapter 6 The Case When hlin(&#x03D5;) &#x2265; 2: Preparatory Results -- 6.1 The First Domain Decomposition -- 6.2 Restriction Estimates in the Transition Domains El When hlin(&#x03D5;) &#x2265; 2 -- 6.3 Restriction Estimates in the Domains Dl, l <lpr, When hlin(&#x03D5;)&#x2265;2 -- 6.4 Restriction Estimates in the Domain Dpr When hlin(&#x03D5;)&#x2265; 5.
938 _aAskews and Holts Library Services
_bASKH
_nAH30704124
938 _aCoutts Information Services
_bCOUT
_n34227205
938 _aEBL - Ebook Library
_bEBLB
_nEBL4336802
938 _aEBSCOhost
_bEBSC
_n1159044
938 _aProQuest MyiLibrary Digital eBook Collection
_bIDEB
_ncis34227205
938 _aYBP Library Services
_bYANK
_n12759015
942 _cEBK
994 _a92
_bINTKS
999 _c81341
_d81341