000 04328cam a2200649Ma 4500
001 ocn968415598
003 OCoLC
005 20220908100117.0
006 m o d
007 cr |n|||||||||
008 170113s2017 xx o 000 0 eng d
040 _aIDEBK
_beng
_epn
_cIDEBK
_dJSTOR
_dIDEBK
_dYDX
_dN$T
_dOCLCQ
_dEBLCP
_dOCLCQ
_dDEBBG
_dLGG
_dDEGRU
_dUAB
_dUKOUP
_dOCLCQ
_dDEHBZ
_dNRC
_dLEAUB
_dUKAHL
_dOCLCQ
_dCUS
_dIEEEE
_dOCLCO
019 _a979595921
_a992933348
020 _a1400885426
_q(electronic bk.)
020 _a9781400885428
_q(electronic bk.)
024 7 _a10.1515/9781400885428
_2doi
029 1 _aGBVCP
_b882892584
035 _a(OCoLC)968415598
_z(OCoLC)979595921
_z(OCoLC)992933348
037 _a985558
_bMIL
037 _a22573/ctt1h180j7
_bJSTOR
037 _a9452463
_bIEEE
050 4 _aQA911
_b.I84 2017eb
072 7 _aTEC
_x014000
_2bisacsh
082 0 4 _a532.1
_223
049 _aMAIN
100 1 _aIsett, Philip.
_964819
245 1 0 _aHolder continuous Euler flows in three dimensions with compact support in time /
_cPhilip Isett.
260 _bPrinceton University Press,
_c2017.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aAnnals of Mathematics Studies ;
_vnumber 196
520 _aMotivated by the theory of turbulence in fluids, the physicist and chemist Lars Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations might fail to conserve energy if their spatial regularity was below 1/3-H�older. In this book, Philip Isett uses the method of convex integration to achieve the best-known results regarding nonuniqueness of solutions and Onsager's conjecture. Focusing on the intuition behind the method, the ideas introduced now play a pivotal role in the ongoing study of weak solutions to fluid dynamics equations. The construction itself--an intricate algorithm with hidden symmetries--mixes together transport equations, algebra, the method of nonstationary phase, underdetermined partial differential equations (PDEs), and specially designed high-frequency waves built using nonlinear phase functions. The powerful "Main Lemma"--Used here to construct nonzero solutions with compact support in time and to prove nonuniqueness of solutions to the initial value problem--has been extended to a broad range of applications that are surveyed in the appendix. Appropriate for students and researchers studying nonlinear PDEs, this book aims to be as robust as possible and pinpoints the main difficulties that presently stand in the way of a full solution to Onsager's conjecture.
588 0 _aPrint version record.
505 0 0 _tFrontmatter --
_tContents --
_tPreface --
_tPart I. Introduction --
_tPart II. General Considerations of the Scheme --
_tPart III. Basic Construction of the Correction --
_tPart IV. Obtaining Solutions from the Construction --
_tPart V. Construction of Regular Weak Solutions: Preliminaries --
_tPart VI Construction of Regular Weak Solutions: Estimating the Correction --
_tPart VII. Construction of Regular Weak Solutions: Estimating the New Stress --
_tAcknowledgments --
_tAppendices --
_tReferences --
_tIndex
546 _aIn English.
590 _aIEEE
_bIEEE Xplore Princeton University Press eBooks Library
650 0 _aFluid dynamics
_xMathematics.
_914386
650 6 _aDynamique des fluides
_xMath�ematiques.
_964820
650 7 _aTECHNOLOGY & ENGINEERING
_xHydraulics.
_2bisacsh
_96220
650 7 _aFluid dynamics
_xMathematics.
_2fast
_0(OCoLC)fst00927983
_914386
655 4 _aElectronic books.
_93294
776 0 8 _iPrint version:
_nDruck-Ausgabe
_z9781400885428
830 0 _aAnnals of mathematics studies ;
_vno. 196.
_964821
856 4 0 _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9452463
938 _aAskews and Holts Library Services
_bASKH
_nAH32254904
938 _aDe Gruyter
_bDEGR
_n9781400885428
938 _aProQuest Ebook Central
_bEBLB
_nEBL4854432
938 _aEBSCOhost
_bEBSC
_n1431856
938 _aProQuest MyiLibrary Digital eBook Collection
_bIDEB
_ncis37319926
938 _aOxford University Press USA
_bOUPR
_nEDZ0001756493
938 _aYBP Library Services
_bYANK
_n13277879
942 _cEBK
994 _a92
_bINTKS
999 _c81354
_d81354