000 05945cam a2200805 i 4500
001 on1091029414
003 OCoLC
005 20220908100155.0
006 m o d
007 cr cnu---unuuu
008 190401s2019 njua ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dN$T
_dEBLCP
_dOCLCF
_dDEGRU
_dJSTOR
_dYDX
_dUKAHL
_dYJJ
_dWAU
_dOCLCQ
_dMM9
_dIEEEE
_dOCLCO
_dOCLCQ
_dOCLCO
_dFAU
020 _a9780691189161
_q(electronic bk.)
020 _a0691189161
_q(electronic bk.)
020 _z0691181314
020 _z9780691181318
029 1 _aAU@
_b000065484659
029 1 _aAU@
_b000068214775
035 _a(OCoLC)1091029414
037 _a22573/ctvc5q6hj
_bJSTOR
037 _a9453319
_bIEEE
050 4 _aQA21
072 7 _aMAT
_x039000
_2bisacsh
072 7 _aMAT
_x023000
_2bisacsh
072 7 _aMAT
_x026000
_2bisacsh
072 7 _aMAT
_x005000
_2bisacsh
072 7 _aMAT
_x015000
_2bisacsh
072 7 _aSCI
_x034000
_2bisacsh
072 7 _aMAT
_x030000
_2bisacsh
082 0 4 _a510.9
_223
049 _aMAIN
100 1 _aBressoud, David M.,
_d1950-
_eauthor.
_965306
245 1 0 _aCalculus reordered :
_ba history of the big ideas /
_cDavid M. Bressoud.
264 1 _aPrinceton, New Jersey :
_bPrinceton University Press,
_c[2019]
300 _a1 online resource (xvi, 224 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
520 8 _aCalculus Reordered takes readers on a remarkable journey through hundreds of years to tell the story of how calculus grew to what we know today. David Bressoud explains why calculus is credited to Isaac Newton and Gottfried Leibniz in the seventeenth century, and how its current structure is based on developments that arose in the nineteenth century. Bressoud argues that a pedagogy informed by the historical development of calculus presents a sounder way for students to learn this fascinating area of mathematics. Delving into calculus's birth in the Hellenistic Eastern Mediterranean--especially Syracuse in Sicily and Alexandria in Egypt--as well as India and the Islamic Middle East, Bressoud considers how calculus developed in response to essential questions emerging from engineering and astronomy. He looks at how Newton and Leibniz built their work on a flurry of activity that occurred throughout Europe, and how Italian philosophers such as Galileo Galilei played a particularly important role. In describing calculus's evolution, Bressoud reveals problems with the standard ordering of its curriculum: limits, differentiation, integration, and series. He contends instead that the historical order--which follows first integration as accumulation, then differentiation as ratios of change, series as sequences of partial sums, and finally limits as they arise from the algebra of inequalities--makes more sense in the classroom environment. Exploring the motivations behind calculus's discovery, Calculus Reordered highlights how this essential tool of mathematics came to be.
504 _aIncludes bibliographical references and index.
588 0 _aOnline resource; title from PDF title page (EBSCO, April 2, 2019).
588 0 _aPrint version record.
505 0 _aCover; Contents; Preface; Chapter 1. Accumulation; 1.1. Archimedes and the Volume of the Sphere; 1.2. The Area of the Circle and the Archimedean Principle; 1.3. Islamic Contributions; 1.4. The Binomial Theorem; 1.5. Western Europe; 1.6. Cavalieri and the Integral Formula; 1.7. Fermat's Integral and Torricelli's Impossible Solid; 1.8. Velocity and Distance; 1.9. Isaac Beeckman; 1.10. Galileo Galilei and the Problem of Celestial Motion; 1.11. Solving the Problem of Celestial Motion; 1.12. Kepler's Second Law; 1.13. Newton's Principia; Chapter 2. Ratios of Change; 2.1. Interpolation
505 8 _a2.2. Napier and the Natural Logarithm; 2.3. The Emergence of Algebra; 2.4. Cartesian Geometry; 2.5. Pierre de Fermat; 2.6. Wallis's Arithmetic of Infinitesimals; 2.7. Newton and the Fundamental Theorem; 2.8. Leibniz and the Bernoullis; 2.9. Functions and Differential Equations; 2.10. The Vibrating String; 2.11. The Power of Potentials; 2.12. The Mathematics of Electricity and Magnetism; Chapter 3. Sequences of Partial Sums; 3.1. Series in the Seventeenth Century; 3.2. Taylor Series; 3.3. Euler's Influence; 3.4. D'Alembert and the Problem of Convergence; 3.5. Lagrange Remainder Theorem
505 8 _aTeaching Series as Sequences of Partial Sums; Teaching Limits as the Algebra of Inequalities; The Last Word; Notes; Bibliography; Index; Image Credits
590 _aIEEE
_bIEEE Xplore Princeton University Press eBooks Library
650 0 _aCalculus.
_965307
650 0 _aMathematics
_xHistory.
_963890
650 6 _aCalcul infinit�esimal.
_965308
650 6 _aMath�ematiques
_xHistoire.
_963893
650 7 _acalculus.
_2aat
_965309
650 7 _aMATHEMATICS
_xEssays.
_2bisacsh
_964120
650 7 _aMATHEMATICS
_xPre-Calculus.
_2bisacsh
_964121
650 7 _aMATHEMATICS
_xReference.
_2bisacsh
_964122
650 7 _aMATHEMATICS
_xCalculus.
_2bisacsh
_916300
650 7 _aCalculus.
_2fast
_0(OCoLC)fst00844119
_965307
650 7 _aMathematics.
_2fast
_0(OCoLC)fst01012163
_911584
655 0 _aElectronic books.
_93294
655 4 _aElectronic books.
_93294
655 7 _aHistory.
_2fast
_0(OCoLC)fst01411628
_95289
776 0 8 _iPrint version:
_aBRESSOUD, DAVID M.
_tCALCULUS REORDERED.
_d[Place of publication not identified], PRINCETON University PRES, 2019
_z0691181314
_w(OCoLC)1059262130
856 4 0 _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9453319
938 _aAskews and Holts Library Services
_bASKH
_nAH36158663
938 _aDe Gruyter
_bDEGR
_n9780691189161
938 _aProQuest Ebook Central
_bEBLB
_nEBL5742551
938 _aEBSCOhost
_bEBSC
_n2003292
938 _aYBP Library Services
_bYANK
_n16136628
942 _cEBK
994 _a92
_bINTKS
999 _c81437
_d81437