000 10275cam a2200481 i 4500
001 on1139850718
003 OCoLC
005 20230516165832.0
006 m o d
007 cr cnu||||||||
008 191209s2020 ne ob 001 0 eng
040 _aAU@
_beng
_erda
_epn
_cAU@
_dOCLCO
_dOCLCF
_dUKMGB
_dYDX
_dN$T
_dOPELS
_dUKAHL
_dOCLCO
_dOCLCQ
015 _aGBC024894
_2bnb
016 7 _a019614364
_2Uk
019 _a1127663031
_a1146770675
020 _a0128172010
020 _a9780128172018
020 _z0128172002
020 _z9780128172001
035 _a(OCoLC)1139850718
_z(OCoLC)1127663031
_z(OCoLC)1146770675
050 4 _aTN799.T5
_b.E987 2019
082 0 4 _a669.7322
_223
245 0 0 _aExtractive metallurgy of titanium :
_bconventional and recent advances in extraction and production of titanium metal /
_cedited by Zhigang Zak Fang, Francis Froes, Ying Zhang.
264 1 _aAmsterdam, Netherlands :
_bElsevier,
_c[2020]
264 4 _c�2020
300 _a1 online resource (438 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
588 0 _aPrint version record
505 0 _a<P>Contents</p> <p>Contributors xi</p> <p>1. Introduction to the development of processes for primary</p> <p>Ti metal production 1</p> <p>Zhigang Zak Fang, Hyrum D. Lefler, F.H. Froes, and Ying Zhang</p> <p>References 8</p> <p>Part 1 Extractive chemical metallurgy processes 11</p> <p>2. A brief introduction to production of titanium dioxide</p> <p>and titanium tetrachloride 13</p> <p>Michael L. Free</p> <p>1. Background 13</p> <p>2. Ore sources 13</p> <p>3. Processing methods 14</p> <p>References 17</p> <p>3. Minerals, slags, and other feedstock for the production</p> <p>of titanium metal 19</p> <p>Dimitrios Filippou and Guillaume Hudon</p> <p>1. Introduction 19</p> <p>2. Ilmenite, rutile, and other natural titanium minerals 21</p> <p>3. Ilmenite smelting to titania slag 26</p> <p>4. Ilmenite conversion to synthetic rutile 32</p> <p>5. Titania slag upgrading to UGS 36</p> <p>6. Production of titanium carbide feedstock 37</p> <p>7. Conclusions 38</p> <p>Acknowledgments 41</p> <p>References 41</p> <p>4. Chemical processes for the production of titanium tetrachloride</p> <p>as precursor of titanium metal 47</p> <p>Guillaume Hudon and Dimitrios Filippou</p> <p>1. Introduction 47</p> <p>2. Titanium tetrachloride 47</p> <p>3. Production of titanium tetrachloride 49</p> <p>4. Titanium tetrachloride purification 55</p> <p>5. Production of pure titanium dioxide 56</p> <p>6. Other precursors 59</p> <p>Acknowledgments 60</p> <p>References 60</p> <p>Part 2 Thermochemical reduction of TiCl4 63</p> <p>5. Fundamentals of thermochemical reduction of TiCl4 65</p> <p>Toru H. Okabe and Osamu Takeda</p> <p>1. Historical developments in titanium metal production 65</p> <p>2. Kroll process 66</p> <p>3. Hunter process 71</p> <p>4. Fundamentals of titanium reduction process 75</p> <p>5. Electrochemical reactions during thermochemical reduction 78</p> <p>6. Reduction mechanism of TiCl4 during the Kroll process 81</p> <p>7. Past research for new titanium production processes 83</p> <p>8. Summary 90</p> <p>References 92</p> <p>6. The Kroll process and production of titanium sponge 97</p> <p>Matthew R. Earlam</p> <p>1. Introduction 97</p> <p>2. Source of ore 99</p> <p>3. Production of TiCl4 100</p> <p>4. Purification of TiCl4 101</p> <p>5. The Hunter process 102</p> <p>6. Armstrong process 103</p> <p>7. Kroll process 103</p> <p>8. Magnesium reduced acid leach (MRAL) (no longer practiced) 104</p> <p>9. Vacuum distillation process TOHO timet 107</p> <p>10. Preparation for melting 110</p> <p>References 111</p> <p>7. A modified Kroll process via production of TiH2 -- thermochemical</p> <p>reductions of TiCl4 using hydrogen and Mg 113</p> <p>Mykhailo Matviychuk, Andrey Klevtsov, and Vladimir S. Moxson</p> <p>1. Introduction 113</p> <p>2. Process description 114</p> <p>3. Experimental results 120</p> <p>4. Role of hydrogen for ADMA process 122</p> <p>References 127</p> <p>Further reading 128</p> <p>Part 3 Thermochemical reduction of TiO2 129</p> <p>8. Metallothermic reduction of TiO2 131</p> <p>Toru H. Okabe</p> <p>1. Introduction 131</p> <p>2. Studies on reduction of titanium oxide before 2000 134</p> <p>3. Studies on reduction of titanium oxide after 2000 143</p> <p>4. Future prospects of metallothermic reduction processes for direct</p> <p>production of titanium from oxides 155</p> <p>5. Summary 159</p> <p>References 160</p> <p>9. Hydrogen assisted magnesiothermic reduction (HAMR) of</p> <p>TiO2 to produce titanium metal powder 165</p> <p>Yang Xia, Hyrum D. Lefler, Ying Zhang, Pei Sun, and Zhigang Zak Fang</p> <p>1. Introduction 165</p> <p>2. Fundamentals of the HAMR process 167</p> <p>3. HAMR process description 172</p> <p>4. HAMR product characterization 173</p> <p>5. Summary 176</p> <p>Acknowledgments 176</p> <p>References 177</p> <p>10. Deoxygenation of Ti metal 181</p> <p>Ying Zhang, Zhigang Zak Fang, Pei Sun, Yang Xia, Hyrum D. Lefler, </p> <p>and Shili Zheng</p> <p>1. Introduction 181</p> <p>2. Thermodynamic properties of the TieO solid solutions 182</p> <p>3. Methods of deoxygenation 186</p> <p>4. Concluding remarks 206</p> <p>A. Appendix 207</p> <p>Acknowledgments 220</p> <p>References 220</p> <p>Part 4 Electrochemical reduction of TiO2 and TiOC 225</p> <p>11. Invention and fundamentals of the FFC Cambridge Process 227</p> <p>George Z. Chen and Derek J. Fray</p> <p>1. Background: how the concept of electro-deoxidation came about 227</p> <p>2. Understanding of electro-deoxidation: interactions of the oxide cathode</p> <p>with molten salts 230</p> <p>3. Understanding of electro-deoxidation: metal/insulator/electrolyte 3PI</p> <p>models 235</p> <p>4. Understanding of electro-deoxidation: the metal-to-oxide molar volume</p> <p>ratio 236</p> <p>5. Development of an inert anode for electro-deoxidation in calcium</p> <p>chloride based melts 241</p> <p>6. Electro-deoxidation of other metal oxides 246</p> <p>7. Electro-desulfidation of metal sulfides 257</p> <p>8. Electro-deoxidation of mixed metal oxides 261</p> <p>9. Titanium based medical implant materials 273</p> <p>10. Cathodic protection of titanium 276</p> <p>11. Outlook and Prospective 278</p> <p>12. Conclusions 279</p> <p>References 280</p> <p>12. OS process: calciothermic reduction of TiO2 via CaO electrolysis</p> <p>in molten CaCl2 287</p> <p>Ryosuke O. Suzuki, Shungo Natsui, and Tatsuya Kikuchi</p> <p>1. Introduction 287</p> <p>2. Cell design 296</p> <p>3. Thermodynamics of desired salt 298</p> <p>4. Validity of Ca reduction during electrolysis 303</p> <p>5. Conclusion 308</p> <p>References 309</p> <p>13. Titanium production through electrolysis of titanium oxycarbide</p> <p>consumable anodedthe USTB process 315</p> <p>Hongmin Zhu, Shuqiang Jiao, Jiusan Xiao, and Jun Zhu</p> <p>1. Introduction 315</p> <p>2. Crystalline structure of titanium oxycarbide and titanium</p> <p>oxycarbonitride 316</p> <p>3. Thermodynamic properties and preparation of titanium oxycarbide from</p> <p>TiO2 by carbon thermal reduction 317</p> <p>4. Electrochemical dissolution of consumable anode 320</p> <p>5. Electrochemical deposition on the cathode 325</p> <p>6. Scaling up and practices of USTB process 326</p> <p>References 328</p> <p>14. Electrolysis of carbothermic treated titanium oxides to produce</p> <p>Ti metal 331</p> <p>James C. Withers</p> <p>References 343</p> <p>Further reading 347</p> <p>Part 5 Other processes 349</p> <p>15. Selected processes for Ti production e a cursory review 351</p> <p>Pei Sun, Ying Zhang, and Zhigang Zak Fang</p> <p>1. Introduction 351</p> <p>2. Continuous processes using Mg or Na as the reductant 352</p> <p>3. Processes using low-cost alternatives as reductants 356</p> <p>4. Summary 360</p> <p>Acknowledgments 360</p> <p>References 360</p> <p>16. Recycling of Ti 363</p> <p>Osamu Takeda, Toru H. Okabe</p> <p>1. Introduction 363</p> <p>2. Ti scraps generated in the smelting process 364</p> <p>3. Ti scraps generated in the aircraft industry 367</p> <p>4. Material flow of Ti scraps 373</p> <p>5. Recycling technologies for Ti scraps 374</p> <p>6. Future perspective of recycling technologies 377</p> <p>7. Conclusions and future remarks 382</p> <p>Acknowledgments 383</p> <p>References 383</p> <p>17. Energy consumption of the Kroll and HAMR processes for</p> <p>titanium production 389</p> <p>Yang Xia, Hyrum D. Lefler, Zhigang Zak Fang, Ying Zhang, and Pei Sun</p> <p>1. Introduction 389</p> <p>2. Review of energy consumption in the Kroll process 390</p> <p>3. Modeling and analysis of energy consumption in the HAMR process 398</p> <p>4. Energy consumption in other emerging processes 404</p> <p>5. Summary and comparison of Kroll and HAMR processes 405</p> <p>Acknowledgments 406</p> <p>References 407</p> <p>Index 411</p>
504 _aIncludes bibliographical references and index.
520 _aExtractive Metallurgy of Titanium: Conventional and Recent Advances in Extraction and Production of Titanium Metal contains information on current and developing processes for the production of titanium. The methods for producing Ti metal are grouped into two categories, including the reduction of TiCl4 and the reduction of TiO2, with their processes classified as either electrochemical or thermochemical. Descriptions of each method or process include both the fundamental principles of the method and the engineering challenges in their practice. In addition, a review of the chemical and physical characteristics of the product produced by each method is included. Sections cover the purity of titanium metal produced based on ASTM and other industry standards, energy consumption, cost and the potential environmental impacts of the processes.
650 0 _aTitanium
_xMetallurgy.
_968426
650 6 _aTitane
_xM�etallurgie.
_0(CaQQLa)201-0250506
_968427
650 7 _aTitanium
_xMetallurgy.
_2fast
_0(OCoLC)fst01151535
_968426
700 1 _aFang, Zhigang Zak,
_eeditor.
_968428
700 1 _aFroes, Francis,
_eeditor.
_968429
700 1 _aZhang, Ying,
_eeditor.
_968430
776 0 _z0128172002
856 4 0 _3ScienceDirect
_uhttps://www.sciencedirect.com/science/book/9780128172001
942 _cEBK
999 _c82374
_d82374