000 08271cam a2200505 a 4500
001 on1153874947
003 OCoLC
005 20230516165851.0
006 m o d
007 cr un|---aucuu
008 200509s2020 ne a ob 001 0 eng d
040 _aEBLCP
_beng
_epn
_cEBLCP
_dYDX
_dOPELS
_dEBLCP
_dOCLCF
_dUKAHL
_dUKMGB
_dNWQ
_dN$T
_dOCLCO
_dSFB
_dOCLCO
_dOCL
_dOCLCQ
_dOCLCO
_dCOM
_dOCL
_dOCLCQ
015 _aGBC053477
_2bnb
016 7 _a019782502
_2Uk
019 _a1153292255
_a1153481751
_a1222781043
_a1229944796
020 _a012821919X
020 _a9780128219195
_q(electronic bk.)
020 _z9780128219188
020 _z0128219181
035 _a(OCoLC)1153874947
_z(OCoLC)1153292255
_z(OCoLC)1153481751
_z(OCoLC)1222781043
_z(OCoLC)1229944796
050 4 _aTS183.25
082 0 4 _a621.9/8
_223
100 1 _aPelleg, Joshua,
_eauthor.
_968720
245 1 0 _aAdditive and traditionally manufactured components :
_ba comparative analysis of mechanical properties /
_cJoshua Pelleg.
264 1 _aAmsterdam :
_bElsevier,
_c2020.
300 _a1 online resource (658 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
336 _astill image
_bsti
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
588 0 _aOnline resource, title from digital title page (viewed on February 10, 2020).
505 0 _aIntro -- Additive and Traditionally Manufactured Components: A Comparative Analysis of Mechanical Properties -- Copyright -- Dedication -- Contents -- Preface -- About the author -- Chapter One: What is additive manufacturing? -- Chapter Two: Fabrication -- 2.1. Fused deposition method (FDM) -- 2.1.1. Melt properties -- 2.1.2. Liquefier -- 2.1.3. Heat convection -- 2.1.4. Pressure drop estimation -- 2.1.5. Layer deposition and stability -- 2.1.6. Road spreading -- 2.1.7. Road cooling and polymer bonding -- 2.2. Powder-bed fusion (PBF) -- 2.3. Inkjet printing -- 2.4. Stereolithography (SLA)
505 8 _a2.4.1. The state of the resin (photopolymer) -- 2.4.2. The maximum cure depth -- 2.4.3. The cured line width -- 2.4.4. Laser scan velocity -- 2.5. Direct energy deposition (DED) -- 2.5.1. Thermal model -- 2.6. Laminated object manufacturing (LOM) -- References -- Further reading -- Chapter Three: Testing: Comparison of AM data with traditionally fabricated -- 3.1. Tensile tests -- 3.1.1. Ti-6Al-4V: AM tensile properties -- 3.1.2. Al alloy AA6061: AM tensile properties -- 3.1.2.1. Conventionally produced (AM) AA6061 -- 3.1.3. Stainless steel 304L: AM tensile properties
505 8 _a3.1.3.1. Conventionally produced SS 304L -- 3.1.4. Ceramic -- 3.1.4.1. AM alumina -- 3.1.4.2. Conventionally fabricated alumina -- 3.2. Compression tests -- 3.2.1. Ti-6Al-4V -- 3.2.2. Conventionally fabricated Ti-6Al-4V -- 3.2.3. Al alloys-Al 60613 -- 3.2.4. Conventionally fabricated Al 6061 -- 3.2.5. AM stainless steel 304L -- 3.2.5.1. Conventionally fabricated stainless steel 304L -- 3.2.6. Ceramics-Alumina -- 3.2.7. Conventionally fabricated alumina (Al2O3) -- 3.2.7.1. Effect of orientation and temperature -- 3.3. Indentation (hardness) -- 3.3.1. Ti-6Al-4V
505 8 _a3.3.1.1. Conventionally produced Ti-6Al-4V -- 3.3.2. Aluminum alloy (Al6061) -- 3.3.3. Conventionally fabricated Al 6061 -- 3.3.4. Stainless steel 304L -- 3.3.4.1. Conventionally produced 304L stainless steel -- 3.3.5. Alumina -- 3.3.6. Conventionally produced alumina -- 3.3.6.1. Temperature dependence -- 3.3.6.2. Hardness of coatings -- 3.3.6.3. Hardness of alumina films -- References -- Further reading -- Chapter Four: Dislocations in AM and traditional manufacturing: A comparison -- 4.1. Introduction -- 4.1.1. In AM Ti-6Al-4V -- 4.1.2. In traditionally fabricated Ti-6Al-4V
505 8 _a4.1.3. Motion of dislocations -- 4.2. Introduction AA6061 -- 4.2.1. AM of AA6061 Al alloy -- 4.2.2. Dislocations in conventionally produced Al AA6061 -- 4.2.2.1. Pinning of dislocations in 6061 -- 4.2.2.2. The strain effect in 6061 -- 4.3. In stainless steel 304L -- 4.3.1. Introduction -- 4.3.2. In AM 304L stainless steel -- 4.3.3. In conventionally fabricated 304L stainless steel -- 4.4. In alumina (Al2O3) -- 4.4.1. In conventionally fabricated alumina -- References -- Further reading -- Chapter Five: Deformation in AM and traditional manufacturing: A comparison -- 5.1. Introduction
505 8 _a5.1.1. Deformation in AM Ti-6Al-4V -- 5.1.2. In traditionally fabricated Ti-6Al-4V -- 5.1.2.1. Tensile deformation -- 5.1.2.2. Compressive deformation -- 5.2. Deformation in AM Al AA6061 -- 5.2.1. Tensile deformation in Al AA6061 -- 5.2.2. Compressive deformation -- 5.2.3. Conventional tensile deformation -- 5.2.4. Conventional compressive deformation -- 5.3. AM stainless steel 304L -- 5.3.1. Tensile deformation -- 5.3.2. Compression deformation -- 5.3.3. Conventionally produced SS 304L -- 5.3.3.1. Tensile deformation in conventionally produced SS 304L -- 5.3.3.2. Compressive deformation in conventionally produced SS 304L -- 5.4. Deformation in alumina -- 5.4.1. Compressive deformation of AM alumina -- 5.4.2. Hardness -- 6.1. Introduction -- 6.2. Dynamic deformation of AM Ti-6Al-4V -- 6.2.1. Tensile test of AM Ti-6Al-4V -- 6.2.2. Tensile test of CP Ti-6Al-4V -- 6.3. Compression tests -- 6.3.1. In AM Ti-6Al-4V -- 6.3.2. In CP Ti-6Al-4V -- 6.3.3. Twinning in Ti-6Al-4V -- 6.4. Dynamic deformation in Al AA6061 -- 6.4.1. Tension test in AM AlSi10Mg -- 6.4.2. Compression test in AM Al Si10Mg -- 6.4.3. Tensile test in CP AA6061 -- 6.4.4. Compression test in CP Al 6061 -- 6.4.5. Tensile test in AM SS 304L -- 6.4.6. Compression test in AM SS 304L -- 6.4.7. Tensile test in CP 304L SS -- 6.4.8. Compression test in CP 304L SS -- 6.5. Dynamic deformation in alumina (Al2O3) -- 6.5.1. Tension test in AM alumina -- 6.5.2. Compression test in AM alumina -- 6.5.3. Hardness in AM alumina -- 6.5.4. Tensile test in CP alumina (Al2O3) -- 6.5.5. Compression test in CP alumina (Al2O3) -- 7.1. Introduction -- 7.2. Tensile creep in AM Ti6Al4V -- 7.3. Compressive creep in AM Ti6Al4V -- 7.4. Tensile creep in CP Ti6Al4V -- 7.5. Compressive creep in CP Ti6Al4V -- 7.6. Tensile creep in AM Al10SiMg -- 7.7. Tensile creep in CP Al AA6061 -- 7.8. Compressive creep in CP Al AA6061 -- 8.1. Introduction to fatigue -- 8.2. Fatigue in AM Ti6Al4V -- 8.2.1. High cycle fatigue -- 8.2.2. Low cycle fatigue -- 8.2.3. Rough surface and notch effect -- 8.3. Fatigue in conventionally fabricated Ti6Al4V -- 8.3.1. High cycle fatigue -- 8.3.2. Low cycle fatigue -- 8.3.3. Rough surface and notch effect -- 8.4. Fatigue in conventionally fabricated Al AA6061 -- 8.4.1. High cycle fatigue in Al 6061 -- 8.4.2. Low cycle fatigue -- 8.5. The Massing hypothesis -- 8.5.1. Rough surface and notch effect -- 8.6. Fatigue in AM SS 304L -- 8.6.1. Hgh cycle fatigue -- 8.6.2. Fatigue in CP SS 304L -- 8.6.2.1. High cycle fatigue -- 9.1. Fracture in AM Ti-6Al-4V -- 9.2. Fracture in AM Al AA6061 -- 9.3. Fracture in AM SS 316L -- 9.4. Fracture in AM alumina -- 9.5. Fracture in CP Ti-6Al-4V -- 9.6. Fracture in CP Al AA6061 -- 9.7. Fracture in CP SS 304L -- 9.7.1. Strain rate effects in CP SS 304L -- 9.7.2. Hydrogen effects in CP SS 304L--Hydrogen embrittlement -- 9.7.2.1. Introduction -- 9.8. Fracture in CP alumina -- 10.1. Tensile properties -- 10.1.1. AM Ti6Al4V -- 10.1.2. CP Ti6Al4V -- 10.1.3. AM of nano-316L SS -- 10.1.4. CP nano-316L SS -- 10.1.4.1. CP nano-316L and 304L SS -- 10.1.4.2. CP nano-304L SS -- 10.2. Compressive properties -- 10.2.1. AM of nano-alumina -- 10.2.2. CP of nano-alumina -- 10.3. Indentation hardness in nanomaterials -- 10.3.1. Introduction -- 10.3.2. Hardness in AM nano-alumina -- 10.3.3. Hardness in CP nano-alumina -- Chapter Eleven -- Epilogue -- Index.
504 _aIncludes bibliographical references and index.
650 0 _aAdditive manufacturing.
_99980
650 6 _aFabrication additive.
_0(CaQQLa)000316409
_968721
650 7 _aAdditive manufacturing.
_2fast
_0(OCoLC)fst02015088
_99980
776 0 8 _iPrint version:
_aPelleg, Joshua.
_tAdditive and Traditionally Manufactured Components : A Comparative Analysis of Mechanical Properties.
_dSan Diego : Elsevier, �2020
856 4 0 _3ScienceDirect
_uhttps://www.sciencedirect.com/science/book/9780128219188
942 _cEBK
999 _c82435
_d82435