000 12351cam a2200625 i 4500
001 on1260160116
003 OCoLC
005 20230516165939.0
006 m o d
007 cr cnu---unuuu
008 210713s2021 enka o 000 0 eng d
040 _aOPELS
_beng
_erda
_epn
_cOPELS
_dOCLCO
_dOCLCF
_dUKMGB
_dUKAHL
_dOCLCO
_dOCLCQ
_dK6U
_dSFB
_dN$T
_dOCLCQ
015 _aGBC173500
_2bnb
016 7 _a020188604
_2Uk
020 _a0128215542
020 _a9780128215548
_q(electronic bk.)
020 _z9780128215531
020 _z0128215534
035 _a(OCoLC)1260160116
050 4 _aR856
082 0 4 _a610.28
_223
245 0 0 _aGreen biocomposites for biomedical engineering :
_bdesign, properties, and applications /
_cedited by Md Enamul Hoque, Ahmed Sharif, Mohammad Jawaid.
264 1 _aOxford :
_bWoodhead Publishing,
_c2021.
300 _a1 online resource (1 volume) :
_billustrations (black and white, and colour)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aWoodhead Publishing series in biomaterials
520 _aGreen Biocomposites for Biomedical Engineering: Design, Properties, and Applications combines emergent research outcomes with fundamental theoretical concepts relevant to processing, properties and applications of advanced green composites in the field of biomedical engineering. The book outlines the design elements and characterization of biocomposites, highlighting each class of biocomposite separately. A broad range of biomedical applications for biocomposites is then covered, with a final section discussing the ethics and safety regulations associated with manufacturing and the use of biocomposites. With contributions from eminent editors and recognized authors around the world, this book is a vital reference for researchers in biomedical engineering, materials science and environmental science, both in industry and academia.
588 0 _aPrint version record.
505 0 _aIntro -- Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications -- Copyright -- Dedication -- Contents -- Contributors -- About the editors -- Preface -- Section A: Introduction and design of biocomposites -- 1 Introduction to green biocomposites -- 1.1 Introduction -- 1.2 Benefits of polymer composites -- 1.3 History of composites -- 1.4 Natural fiber-reinforced polymer composites -- 1.5 Green biocomposites -- 1.5.1 Natural fiber -- 1.5.2 Biopolymer matrix -- 1.6 Biomedical applications of green biocomposites -- 1.7 Ecological concerns about plastic pollution -- References -- 2 Computational modeling of biocomposites -- 2.1 Introduction -- 2.1.1 Computational modeling and validation -- 2.2 Modeling of bionanocomposites -- 2.3 Mechanical modeling and failure analysis of biocomposites -- 2.3.1 Micromechanical analysis -- 2.3.2 Macromechanical analysis -- 2.3.3 Mesoscale analysis -- 2.4 Thermal modeling of biocomposites -- 2.5 Modeling of biocomposites for biomedical applications -- 2.6 Conclusion -- References -- Section B: Diversities of biocomposites -- 3 Antimicrobial biocomposites -- 3.1 Introduction -- 3.2 Polysaccharides-based biocomposite and its antimicrobial effect -- 3.2.1 Starch and its derivatives -- 3.2.2 Cellulose and its derivatives -- 3.2.3 Pectin and its derivatives -- 3.2.4 Chitosan and its derivatives -- 3.2.5 Seaweed biopolymers -- 3.3 Proteins/polypeptides-based biocomposite and its antimicrobial effect -- 3.3.1 Keratin -- 3.3.2 Caseinates -- 3.3.3 Collagen -- 3.4 Ammonium and Phosphonium group-based biocomposite and its antimicrobial effect -- 3.5 Antimicrobial response of hydroxyapatite (HA)-based biocomposites -- 3.6 Effect of metal-based Nanopowders on antibacterial response -- 3.6.1 Antibacterial response of zinc oxide (ZnO) nanoparticles.
505 8 _a3.6.2 Antibacterial response of silver (Ag) nanoparticles -- 3.6.3 Antibacterial response of copper and copper oxide nanoparticles -- 3.6.4 Antibacterial response of Iron oxide nanoparticles -- 3.6.5 Antibacterial response of magnesium oxide (MgO) nanoparticles -- 3.6.6 Antibacterial response of gold (Au) nanoparticles -- 3.7 Antimicrobial nanofibers -- 3.7.1 Antimicrobial nanofibers by physical mixture -- 3.7.2 Antimicrobial nanofibers by chemical modification of polymers -- 3.8 Antimicrobial biocomposite in food coating -- 3.8.1 Properties of polysaccharides for antimicrobial food coating -- 3.9 Antimicrobial bio-packaging -- 3.9.1 System models -- 3.9.2 Antimicrobial mechanisms in food packaging -- 3.10 Antimicrobial biocomposite for biomedical application -- 3.10.1 Antimicrobial wound dressing -- 3.10.2 Bone and tissue engineering -- 3.11 Conclusion and future perspectives -- References -- 4 Bioactive glass composites: From synthesis to application -- 4.1 Introduction -- 4.2 Synthesis of glass composites -- 4.3 Synthesis approaches of bioactive glass composites -- 4.3.1 Physical approach -- 4.3.1.1 Melt quench method -- 4.3.1.2 Spray pyrolysis method -- 4.3.1.3 Spray drying method -- 4.3.1.4 Electrospinning method -- 4.3.1.5 Laser spinning technique -- 4.3.2 Chemical approach -- 4.3.2.1 Sol-gel method -- 4.3.2.2 Microemulsion approach -- 4.3.2.3 Hydrothermal method -- 4.3.3 Biological methods -- 4.3.4 Hybrid methods -- 4.3.5 Other novel methods -- 4.4 Properties of bioactive glass composites -- 4.4.1 Mechanical property -- 4.4.2 Optical property -- 4.4.3 Magnetic property -- 4.4.4 Electrical property -- 4.4.5 Other properties -- 4.5 Applications of bioactive glass composites -- 4.5.1 Orthopedic applications -- 4.5.2 Antimicrobial applications -- 4.5.3 Drug delivery applications.
505 8 _a4.5.4 Cardiovascular applications -- 4.5.5 Dental applications -- 4.6 Future perspective and conclusion -- References -- 5 An overview of metal oxide-filled biocomposites -- 5.1 Introduction -- 5.2 Copper oxide (CuO) -filled biocomposites -- 5.3 Zinc oxides-filled biocomposites -- 5.3.1 Mechanical, thermal, antibacterial, and other properties of ZnO-based biocomposites -- 5.4 Magnesium oxide-filled biocomposites -- 5.4.1 Properties of MgO-based composites -- 5.5 Conclusions and future prospects -- Acknowledgment -- References -- 6 Bioresorbable biocomposites -- 6.1 Introduction -- 6.2 Preparation of bioresorbable biocomposites -- 6.2.1 3D bioprinting -- 6.2.2 Sol-gel process -- 6.2.3 Solvent casting -- 6.2.4 Hot pressing -- 6.3 Different types of bioresorbable biocomposites -- 6.3.1 PLA-based biocomposites -- 6.3.2 Calcium phosphate-based biocomposites -- 6.3.3 Silk-based biocomposites -- 6.3.4 Nanoparticle-reinforced biocomposites -- 6.3.4.1 Nanometal-based biocomposites -- 6.3.4.2 Carbon nanotube-based biocomposites -- 6.3.4.3 Gelatin-based biocomposites -- 6.3.4.4 Collagen-based biocomposites -- 6.3.4.5 Nanoclay-based biocomposites -- 6.4 Biocomposites for biomedical applications -- 6.5 Conclusions -- References -- 7 Cellulose-based biocomposites -- 7.1 Introduction -- 7.2 Chemistry of cellulose -- 7.3 Designing cellulosic biocomposite in different forms -- 7.3.1 Cellulose-based fibers -- 7.3.2 Cellulose-based crystals -- 7.3.3 Cellulose-based hydrogels -- 7.3.4 Cellulose-based films -- 7.3.5 Cellulose-based powders -- 7.3.6 Cellulose-based biofoams -- 7.4 Formation of cellulose in biomass -- 7.5 Natural formation in plants -- 7.5.1 Natural formation in microorganisms -- 7.6 Extraction of cellulose -- 7.7 Physico-chemical properties of cellulose and its derivatives -- 7.7.1 Physical properties.
505 8 _a7.7.2 Thermal properties -- 7.7.3 Electrical properties -- 7.7.4 Chemical properties -- 7.8 Cellulose-based biocomposites -- 7.8.1 Fiber-matrix interfacial interaction -- 7.8.2 Surface modification methods -- 7.8.2.1 Physical treatments -- 7.8.2.2 Physico-chemical treatments -- 7.8.2.3 Chemical treatments -- 7.8.3 Conventional processing methods -- 7.9 Applications of cellulose-based biocomposites in biomedical engineering -- 7.9.1 In tissue engineering and regenerative medicine -- 7.9.1.1 Bone tissue grafts -- 7.9.1.2 Cartilage, ligament, and tendon -- 7.9.1.3 Intervertebral disc and meniscus implant -- 7.9.1.4 Cardiac prosthesis -- 7.9.1.5 Artificial blood vessels -- 7.9.2 In wound dressing, artificial skin, and skin tissue repairing -- 7.9.3 In dental applications -- 7.9.4 In ophthalmologic applications -- 7.9.5 In biosensors and diagnostic devices -- 7.9.6 In drug delivery -- 7.9.7 In neural applications -- 7.10 Future trends -- 7.11 Conclusions -- References -- 8 Graphene-based nanocomposites for biomedical engineering application -- 8.1 Introduction -- 8.2 Synthesis of graphene-based nanocomposite -- 8.3 Properties of graphene-based nanocomposite -- 8.4 Biomedical applications of graphene-based nanocomposites -- 8.4.1 Drug delivery applications -- 8.4.2 Gene therapy applications -- 8.4.3 Tissue engineering applications -- 8.4.4 Antibacterial applications -- 8.4.5 Biosensing applications -- 8.4.6 Orthopedic and dental applications -- 8.5 Conclusion -- References -- 9 Fabrication and characterization of chicken feather fiber-reinforced polymer composites -- 9.1 Introduction -- 9.2 Materials and methods -- 9.2.1 Chicken keratin fiber (CFF) extraction -- 9.3 Chicken keratin fiber characteristics -- 9.3.1 Cleanliness and color -- 9.3.2 Textural property -- 9.3.3 Mechanical property.
505 8 _a9.3.4 Absorbed moisture content -- 9.4 Composites fabrication -- 9.5 Composite characterization -- 9.5.1 Physical properties -- 9.5.2 Mechanical properties -- 9.5.3 Thermal characteristics -- 9.5.4 Morphological properties -- 9.5.5 Fourier transform infra-red (FTIR) spectroscopy -- 9.5.6 X-ray diffraction (XRD) -- 9.6 Fiber characteristics -- 9.6.1 Cleanliness and color -- 9.6.2 FTIR spectra -- 9.6.3 XRD analysis -- 9.6.4 Thermal analysis -- 9.6.5 Moisture regain -- 9.6.6 Linear fiber density -- 9.6.7 Mechanical properties -- 9.6.8 Microstructural analysis -- 9.7 FTIR spectra of chicken keratin fiber-reinforced vinyl ester composites -- 9.8 XRD curves of chicken keratin fiber vinyl ester composites -- 9.9 Effect on physical properties of CFF polymer composites -- 9.10 Effect on mechanical characteristics of chicken keratin fiber-reinforced polymer laminates -- 9.10.1 Tensile properties -- 9.10.2 Compression properties -- 9.10.3 Flexural properties -- 9.10.4 Impact strength and Vickers hardness -- 9.11 Effect on thermal stability of CFF polymer composites -- 9.12 Morphological properties -- 9.13 Conclusion -- References -- 10 Sugarcane nanocellulose fiber-reinforced vinyl ester nanocomposites -- 10.1 Introduction -- 10.2 Materials and methods -- 10.2.1 Chemical treatment on sugarcane nanocellulose -- 10.2.2 Fabrication of vinyl ester composite -- 10.2.3 Vinyl ester nanocomposites characterization -- 10.2.3.1 Physical properties -- 10.2.3.2 Mechanical properties -- 10.2.3.3 Tensile fracture -- 10.2.3.4 Thermal characteristics -- 10.3 Results and discussion -- 10.3.1 Physical properties -- 10.3.2 Mechanical properties -- 10.3.2.1 Tensile properties -- 10.3.2.2 Tensile fracture -- 10.3.2.3 Compression properties -- 10.3.2.4 Flexural properties -- 10.3.2.5 Impact strength and hardness.
650 0 _aBioengineering.
_93883
650 0 _aComposite materials.
_95181
650 0 _aBiomedical materials.
_93868
650 2 _aBiotechnology
_0(DNLM)D001709
_97533
650 6 _aBiotechnologie.
_0(CaQQLa)201-0004007
_969056
650 6 _aComposites.
_0(CaQQLa)201-0025721
_915524
650 6 _aBiomat�eriaux.
_0(CaQQLa)201-0025723
_968433
650 7 _abioengineering.
_2aat
_0(CStmoGRI)aat300250623
_93883
650 7 _acomposite material.
_2aat
_0(CStmoGRI)aat300014627
_969385
650 7 _aBioengineering.
_2fast
_0(OCoLC)fst00832028
_93883
650 7 _aBiomedical materials.
_2fast
_0(OCoLC)fst00832586
_93868
650 7 _aComposite materials.
_2fast
_0(OCoLC)fst00871682
_95181
700 1 _aHoque, Md. Enamul,
_eeditor.
_969386
700 1 _aSharif, Ahmed,
_eeditor.
_969387
700 1 _aJawaid, Mohammad,
_eeditor.
_99150
776 0 8 _iPrint version:
_tGreen biocomposites for biomedical engineering.
_dOxford : Woodhead Publishing, 2021
_z9780128215531
_w(OCoLC)1255851090
830 0 _aWoodhead Publishing series in biomaterials.
_968481
856 4 0 _3ScienceDirect
_uhttps://www.sciencedirect.com/science/book/9780128215531
942 _cEBK
999 _c82590
_d82590