000 06553nam a2200733 i 4500
001 9780750340557
003 IOP
005 20230516170258.0
006 m eo d
007 cr bn |||m|||a
008 211206s2021 enka fob 000 0 eng d
020 _a9780750340557
_qebook
020 _a9780750340540
_qmobi
020 _z9780750340533
_qprint
020 _z9780750340564
_qmyPrint
024 7 _a10.1088/978-0-7503-4055-7
_2doi
035 _a(CaBNVSL)thg00082868
035 _a(OCoLC)1288247138
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQC174.4
_b.A787 2021eb
072 7 _aPHQ
_2bicssc
072 7 _aSCI057000
_2bisacsh
082 0 4 _a530.133
_223
100 1 _aAttard, Phil,
_eauthor.
_970667
245 1 0 _aQuantum statistical mechanics in classical phase space /
_cPhil Attard.
264 1 _aBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
_bIOP Publishing,
_c[2021]
300 _a1 online resource (various pagings) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _a[IOP release $release]
490 1 _aIOP ebooks. [2021 collection]
500 _a"Version: 202111"--Title page verso.
504 _aIncludes bibliographical references.
505 0 _a1. Introduction -- 1.1. Why phase space? -- 1.2. Why not direct quantum methods? -- 1.3. Advantages and challenges of phase space -- 1.4. Old applications, new perspectives
505 8 _a2. Wave packet formulation -- 2.1. Introduction -- 2.2. Wave packets as eigenfunctions in the classical limit -- 2.3. Wave packet symmetrization and overlap -- 2.4. Statistical averages in phase space
505 8 _a3. Symmetrization factor and permutation loop expansion -- 3.1. Introduction -- 3.2. Partition function -- 3.3. Symmetrization and occupancy for multi-particle states -- 3.4. Symmetrization expansion of the partition function
505 8 _a4. Applications with single-particle states -- 4.1. Ideal gas -- 4.2. Independent harmonic oscillators -- 4.3. Occupancy of single-particle states -- 4.4. Ideal fermions
505 8 _a5. The [lambda]-transition and superfluidity in liquid helium -- 5.1. Introduction -- 5.2. Ideal gas approach to the [lambda]-transition -- 5.3. Ideal gas : exact enumeration -- 5.4. The [lambda]-transition for interacting bosons -- 5.5. Interactions on the far side -- 5.6. Permutation loops, the [lambda]-transition, and superfluidity
505 8 _a6. Further applications -- 6.1. Vibrational heat capacity of solids -- 6.2. One-dimensional harmonic crystal -- 6.3. Loop Markov superposition approximation -- 6.4. Symmetrization for spin-position factorization
505 8 _a7. Phase space formalism for the partition function and averages -- 7.1. Partition function in classical phase space -- 7.2. Loop expansion, grand potential and average energy -- 7.3. Multi-particle density -- 7.4. Virial pressure
505 8 _a8. High temperature expansions for the commutation function -- 8.1. Preliminary definitions -- 8.2. Expansion 1 -- 8.3. Expansion 2 -- 8.4. Expansion 3 -- 8.5. Fluctuation expansion -- 8.6. Numerical results
505 8 _a9. Nested commutator expansion for the commutation function -- 9.1. Introduction -- 9.2. Commutator factorization of exponentials -- 9.3. Maxwell-Boltzmann operator factorized -- 9.4. Temperature derivative of the commutation function operator -- 9.5. Evaluation of the commutation function -- 9.6. Results for the one-dimensional harmonic crystal
505 8 _a10. Local state expansion for the commutation function -- 10.1. Effective local field and operator -- 10.2. Higher order local fields -- 10.3. Harmonic local field -- 10.4. Gross-Pitaevskii mean field Schr�odinger equation -- 10.5. Numerical results in one-dimension
505 8 _a11. Many-body expansion for the commutation function -- 11.1. Commutation function -- 11.2. Symmetrization function -- 11.3. Generalized Mayer f-function -- 11.4. Numerical analysis -- 11.5. Ursell clusters, Lee-Yang theory, classical phase space
505 8 _a12. Density matrix and partition function -- 12.1. Introduction -- 12.2. Quantum statistical average -- 12.3. Uniform weight density of wave space -- 12.4. Canonical equilibrium system.
520 3 _aQuantum Statistical Mechanics in Classical Phase Space offers not just a new computational approach to condensed matter systems, but also a unique conceptual framework for understanding the quantum world and collective molecular behaviour. A formally exact transformation, this revolutionary approach goes beyond the quantum perturbation of classical condensed matter to applications that lie deep in the quantum regime.
521 _aLecturers, and scientific researchers in the fields of thermodynamics, statistical mechanics, condensed matter physics, theoretical chemistry, dynamics, many-body systems, or quantum mechanics.
530 _aAlso available in print.
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
545 _aPhil Attard researches broadly in statistical mechanics, quantum mechanics, thermodynamics, and colloid science. He has held academic positions in Australia, Europe, and North America, and he was a Professorial Research Fellow of the Australian Research Council. He has authored some 120 papers, 10 review articles, and 4 books, with over 7000 citations. As an internationally recognized researcher, he has made seminal contributions to the theory of electrolytes and the electric double layer, to measurement techniques for atomic force microscopy and colloid particle interactions, and to computer simulation and integral equation algorithms for condensed matter. Attard is perhaps best known for his discovery of nanobubbles and for establishing their nature.
588 0 _aTitle from PDF title page (viewed on December 6, 2021).
650 0 _aQuantum statistics.
_945330
650 0 _aPhase transformations (Statistical physics)
_913711
650 7 _aQuantum physics (quantum mechanics & quantum field theory)
_2bicssc
_970668
650 7 _aQuantum science.
_2bisacsh
_970128
710 2 _aInstitute of Physics (Great Britain),
_epublisher.
_911622
776 0 8 _iPrint version:
_z9780750340533
_z9780750340564
830 0 _aIOP (Series).
_pRelease 21.
_970669
830 0 _aIOP ebooks.
_p2021 collection.
_970670
856 4 0 _uhttps://iopscience.iop.org/book/978-0-7503-4055-7
942 _cEBK
999 _c82884
_d82884