000 06001nam a2200829 i 4500
001 9780750316460
003 IOP
005 20230516170301.0
006 m eo d
007 cr cn |||m|||a
008 230109s2022 enka fob 000 0 eng d
020 _a9780750316460
_qebook
020 _a9780750316477
_qmobi
020 _z9780750316453
_qprint
020 _z9780750319546
_qmyPrint
024 7 _a10.1088/978-0-7503-1646-0
_2doi
035 _a(CaBNVSL)thg00083519
035 _a(OCoLC)1358413833
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aR857.O6
_bP677 2018eb vol. 3
060 4 _aQT 36
_bP826p 2018eb vol. 3
072 7 _aMQW
_2bicssc
072 7 _aTEC059000
_2bisacsh
082 0 4 _a621.36
_223
100 1 _aPopescu, Gabriel,
_d1971-
_eauthor.
_970691
245 1 0 _aPrinciples of biophotonics.
_nVolume 3,
_pField propagation in linear, homogeneous, dispersionless, isotropic media /
_cGabriel Popescu.
246 3 0 _aField propagation in linear, homogeneous, dispersionless, isotropic media.
264 1 _aBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :
_bIOP Publishing,
_c[2022]
300 _a1 online resource (various pagings) :
_billustrations (some color).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _a[IOP release $release]
490 1 _aIPEM-IOP series in physics and engineering in medicine and biology
490 1 _aIOP ebooks. [2022 collection]
500 _a"Version: 20221201"--Title page verso.
504 _aIncludes bibliographical references.
505 0 _a1. Maxwell's equation in integral form -- 1.1. Faraday's law -- 1.2. Amp�ere's law -- 1.3. Gauss's law for electric fields -- 1.4. Gauss's law for magnetic fields -- 1.5. Problems
505 8 _a2. Maxwell's equations in differential form -- 2.1. The four main equations -- 2.2. Constitutive relations -- 2.3. Maxwell's equations in other representations -- 2.4. Classification of optical materials -- 2.5. Boundary conditions -- 2.6. Reflection and refraction at boundaries -- 2.7. Characteristic impedance -- 2.8. Poynting theorem and energy conservation -- 2.9. Phase, group, and energy velocity -- 2.10. The wave equation -- 2.11. Wave equation in other representations -- 2.12. Problems
505 8 _a3. Propagation of electromagnetic fields -- 3.1. Dyadic Green's function -- 3.2. Electric dipole radiation -- 3.3. Magnetic dipole radiation -- 3.4. Problems
505 8 _a4. Propagation of scalar fields in free space -- 4.1. Primary and secondary sources -- 4.2. 1D Green's function : plane wave -- 4.3. 2D Green's function : cylindrical wave -- 4.4. 3D Green's function : spherical wave -- 4.5. Problems
505 8 _a5. Diffraction of scalar fields -- 5.1. Diffraction by a 2D object -- 5.2. Plane wave decomposition of spherical waves : Weyl's formula -- 5.3. Angular spectrum propagation approximation -- 5.4. Fresnel approximation -- 5.5. Fraunhofer approximation -- 5.6. Fourier properties of lenses -- 5.7. Problems
505 8 _a6. Geometrical optics -- 6.1. Applicability of geometrical optics -- 6.2. WKB approximation : eikonal equation and geometrical optics -- 6.3. Fermat's principle -- 6.4. Refraction through curved surfaces -- 6.5. Reflection by curved mirrors -- 6.6. Ray propagation (ABCD) matrices -- 6.7. Problems
505 8 _a7. Gaussian beam propagation -- 7.1. Definition of a light beam -- 7.2. Fresnel propagation of Gaussian beams -- 7.3. Gaussian beam characteristics -- 7.4. Gaussian beam propagation using ABCD matrices -- 7.5. Problems
505 8 _a8. Propagation of field correlations -- 8.1. Heisenberg uncertainty relation and the coherence of light -- 8.2. Spatiotemporal field correlations -- 8.3. Coherence mode decomposition of random fields -- 8.4. Deterministic signal associated with a random stationary field -- 8.5. Propagation of field correlations : intuitive picture -- 8.6. Stochastic wave equation -- 8.7. Wave equation for the deterministic signal associated with a random field -- 8.8. Propagation of spatial coherence : van Cittert-Zernike theorem -- 8.9. Problems.
520 3 _aThis volume aims to familiarize the reader with basic concepts of light propagation in the simplest class of media: linear, homogenous, dispersionless, and isotropic.
521 _aStudents, instructors, and professionals who are active at the interface between biology, medicine, and optics.
530 _aAlso available in print.
538 _aMode of access: World Wide Web.
538 _aSystem requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
545 _aGabriel Popescu is the William L. Everitt Distinguished Professor of Electrical and Computer Engineering at the University of Illinois Urbana-Champaign. He received his PhD in optics in 2002 from CREOL, The College of Optics and Photonics, University of Central Florida.
588 0 _aTitle from PDF title page (viewed on January 9, 2023).
650 0 _aBiophotometry.
_970692
650 0 _aPhotonics
_xIndustrial applications.
_970443
650 0 _aPhotonics
_xTherapeutic use.
_970693
650 0 _aBiomedical engineering.
_93292
650 0 _aLight.
_914009
650 1 2 _aBiomedical Engineering.
_93292
650 1 2 _aOptical Phenomena.
_970694
650 2 2 _aLight.
_914009
650 2 2 _aOptical Imaging.
_970695
650 2 2 _aOptics and Photonics
_xmethods.
_970696
650 7 _aBiomedical engineering.
_2bicssc
_93292
650 7 _aTECHNOLOGY & ENGINEERING / Biomedical.
_2bisacsh
_915690
710 2 _aInstitute of Physics (Great Britain),
_epublisher.
_911622
776 0 8 _iPrint version:
_z9780750316453
_z9780750319546
830 0 _aIOP (Series).
_pRelease 22.
_970697
830 0 _aIPEM-IOP series in physics and engineering in medicine and biology.
_970161
830 0 _aIOP ebooks.
_p2022 collection.
_970698
856 4 0 _uhttps://iopscience.iop.org/book/mono/978-0-7503-1646-0
942 _cEBK
999 _c82889
_d82889