000 | 06001nam a2200829 i 4500 | ||
---|---|---|---|
001 | 9780750316460 | ||
003 | IOP | ||
005 | 20230516170301.0 | ||
006 | m eo d | ||
007 | cr cn |||m|||a | ||
008 | 230109s2022 enka fob 000 0 eng d | ||
020 |
_a9780750316460 _qebook |
||
020 |
_a9780750316477 _qmobi |
||
020 |
_z9780750316453 _qprint |
||
020 |
_z9780750319546 _qmyPrint |
||
024 | 7 |
_a10.1088/978-0-7503-1646-0 _2doi |
|
035 | _a(CaBNVSL)thg00083519 | ||
035 | _a(OCoLC)1358413833 | ||
040 |
_aCaBNVSL _beng _erda _cCaBNVSL _dCaBNVSL |
||
050 | 4 |
_aR857.O6 _bP677 2018eb vol. 3 |
|
060 | 4 |
_aQT 36 _bP826p 2018eb vol. 3 |
|
072 | 7 |
_aMQW _2bicssc |
|
072 | 7 |
_aTEC059000 _2bisacsh |
|
082 | 0 | 4 |
_a621.36 _223 |
100 | 1 |
_aPopescu, Gabriel, _d1971- _eauthor. _970691 |
|
245 | 1 | 0 |
_aPrinciples of biophotonics. _nVolume 3, _pField propagation in linear, homogeneous, dispersionless, isotropic media / _cGabriel Popescu. |
246 | 3 | 0 | _aField propagation in linear, homogeneous, dispersionless, isotropic media. |
264 | 1 |
_aBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : _bIOP Publishing, _c[2022] |
|
300 |
_a1 online resource (various pagings) : _billustrations (some color). |
||
336 |
_atext _2rdacontent |
||
337 |
_aelectronic _2isbdmedia |
||
338 |
_aonline resource _2rdacarrier |
||
490 | 1 | _a[IOP release $release] | |
490 | 1 | _aIPEM-IOP series in physics and engineering in medicine and biology | |
490 | 1 | _aIOP ebooks. [2022 collection] | |
500 | _a"Version: 20221201"--Title page verso. | ||
504 | _aIncludes bibliographical references. | ||
505 | 0 | _a1. Maxwell's equation in integral form -- 1.1. Faraday's law -- 1.2. Amp�ere's law -- 1.3. Gauss's law for electric fields -- 1.4. Gauss's law for magnetic fields -- 1.5. Problems | |
505 | 8 | _a2. Maxwell's equations in differential form -- 2.1. The four main equations -- 2.2. Constitutive relations -- 2.3. Maxwell's equations in other representations -- 2.4. Classification of optical materials -- 2.5. Boundary conditions -- 2.6. Reflection and refraction at boundaries -- 2.7. Characteristic impedance -- 2.8. Poynting theorem and energy conservation -- 2.9. Phase, group, and energy velocity -- 2.10. The wave equation -- 2.11. Wave equation in other representations -- 2.12. Problems | |
505 | 8 | _a3. Propagation of electromagnetic fields -- 3.1. Dyadic Green's function -- 3.2. Electric dipole radiation -- 3.3. Magnetic dipole radiation -- 3.4. Problems | |
505 | 8 | _a4. Propagation of scalar fields in free space -- 4.1. Primary and secondary sources -- 4.2. 1D Green's function : plane wave -- 4.3. 2D Green's function : cylindrical wave -- 4.4. 3D Green's function : spherical wave -- 4.5. Problems | |
505 | 8 | _a5. Diffraction of scalar fields -- 5.1. Diffraction by a 2D object -- 5.2. Plane wave decomposition of spherical waves : Weyl's formula -- 5.3. Angular spectrum propagation approximation -- 5.4. Fresnel approximation -- 5.5. Fraunhofer approximation -- 5.6. Fourier properties of lenses -- 5.7. Problems | |
505 | 8 | _a6. Geometrical optics -- 6.1. Applicability of geometrical optics -- 6.2. WKB approximation : eikonal equation and geometrical optics -- 6.3. Fermat's principle -- 6.4. Refraction through curved surfaces -- 6.5. Reflection by curved mirrors -- 6.6. Ray propagation (ABCD) matrices -- 6.7. Problems | |
505 | 8 | _a7. Gaussian beam propagation -- 7.1. Definition of a light beam -- 7.2. Fresnel propagation of Gaussian beams -- 7.3. Gaussian beam characteristics -- 7.4. Gaussian beam propagation using ABCD matrices -- 7.5. Problems | |
505 | 8 | _a8. Propagation of field correlations -- 8.1. Heisenberg uncertainty relation and the coherence of light -- 8.2. Spatiotemporal field correlations -- 8.3. Coherence mode decomposition of random fields -- 8.4. Deterministic signal associated with a random stationary field -- 8.5. Propagation of field correlations : intuitive picture -- 8.6. Stochastic wave equation -- 8.7. Wave equation for the deterministic signal associated with a random field -- 8.8. Propagation of spatial coherence : van Cittert-Zernike theorem -- 8.9. Problems. | |
520 | 3 | _aThis volume aims to familiarize the reader with basic concepts of light propagation in the simplest class of media: linear, homogenous, dispersionless, and isotropic. | |
521 | _aStudents, instructors, and professionals who are active at the interface between biology, medicine, and optics. | ||
530 | _aAlso available in print. | ||
538 | _aMode of access: World Wide Web. | ||
538 | _aSystem requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. | ||
545 | _aGabriel Popescu is the William L. Everitt Distinguished Professor of Electrical and Computer Engineering at the University of Illinois Urbana-Champaign. He received his PhD in optics in 2002 from CREOL, The College of Optics and Photonics, University of Central Florida. | ||
588 | 0 | _aTitle from PDF title page (viewed on January 9, 2023). | |
650 | 0 |
_aBiophotometry. _970692 |
|
650 | 0 |
_aPhotonics _xIndustrial applications. _970443 |
|
650 | 0 |
_aPhotonics _xTherapeutic use. _970693 |
|
650 | 0 |
_aBiomedical engineering. _93292 |
|
650 | 0 |
_aLight. _914009 |
|
650 | 1 | 2 |
_aBiomedical Engineering. _93292 |
650 | 1 | 2 |
_aOptical Phenomena. _970694 |
650 | 2 | 2 |
_aLight. _914009 |
650 | 2 | 2 |
_aOptical Imaging. _970695 |
650 | 2 | 2 |
_aOptics and Photonics _xmethods. _970696 |
650 | 7 |
_aBiomedical engineering. _2bicssc _93292 |
|
650 | 7 |
_aTECHNOLOGY & ENGINEERING / Biomedical. _2bisacsh _915690 |
|
710 | 2 |
_aInstitute of Physics (Great Britain), _epublisher. _911622 |
|
776 | 0 | 8 |
_iPrint version: _z9780750316453 _z9780750319546 |
830 | 0 |
_aIOP (Series). _pRelease 22. _970697 |
|
830 | 0 |
_aIPEM-IOP series in physics and engineering in medicine and biology. _970161 |
|
830 | 0 |
_aIOP ebooks. _p2022 collection. _970698 |
|
856 | 4 | 0 | _uhttps://iopscience.iop.org/book/mono/978-0-7503-1646-0 |
942 | _cEBK | ||
999 |
_c82889 _d82889 |