000 03115cam a2200553Ki 4500
001 9780429398292
003 FlBoTFG
005 20230516170538.0
006 m o d
007 cr |||||||||||
008 200717s2020 flua fob 000 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9780429675683
_q(e-book)
020 _a0429675682
_q(e-book)
020 _a9780429398292
_q(electronic bk.)
020 _a0429398298
_q(electronic bk.)
020 _a9780429675669
_q(electronic bk. : Mobipocket)
020 _a0429675666
_q(electronic bk. : Mobipocket)
020 _a9780429675676
_q(electronic bk. : EPUB)
020 _a0429675674
_q(electronic bk. : EPUB)
020 _z9780367027056
035 _a(OCoLC)1196191610
_z(OCoLC)1200846302
035 _a(OCoLC-P)1196191610
050 4 _aQA300
072 7 _aMAT
_x000000
_2bisacsh
072 7 _aMAT
_x003000
_2bisacsh
072 7 _aPBW
_2bicssc
082 0 4 _a515
_223
245 0 0 _aData science for mathematicians /
_cedited by Nathan Carter.
250 _aFirst edition.
264 1 _aBoca Raton :
_bChapman & Hall/CRC,
_c2020.
300 _a1 online resource :
_billustrations (black and white)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _aProgramming with data / Sean Raleigh -- Linear algebra / Jeffery Leader -- Basic statistics / David White -- Clustering / Amy S. Wagaman -- Operations research / Alice Paul and Susan Martonosi -- Dimensionality reduction / Sofya Chepushtanova, Elin Farnell, Eric Kehoe, Michael Kirby, and Henry Kvinge -- Machine learning / Mahesh Agarwal, Nathan Carter, and David Oury -- Deep learning / Samuel S. Watson -- Topological data analysis / Henry Adams, Johnathan Bush, Joshua Mirth.
520 _aMathematicians have skills that, if deepened in the right ways, would enable them to use data to answer questions important to them and others, and report those answers in compelling ways. Data science combines parts of mathematics, statistics, computer science. Gaining such power and the ability to teach has reinvigorated the careers of mathematicians. This handbook will assist mathematicians to better understand the opportunities presented by data science. As it applies to the curriculum, research, and career opportunities, data science is a fast-growing field. Contributors from both academics and industry present their views on these opportunities and how to advantage them.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aMathematical analysis.
_911486
650 0 _aMathematical statistics.
_99597
650 0 _aData mining.
_93907
650 0 _aBig data
_xMathematics.
_971394
650 7 _aMATHEMATICS / General
_2bisacsh
_971395
650 7 _aMATHEMATICS / Applied
_2bisacsh
_96859
700 1 _aCarter, Nathan C.,
_eeditor.
_971396
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9780429398292
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
942 _cEBK
999 _c83018
_d83018