000 | 03115cam a2200553Ki 4500 | ||
---|---|---|---|
001 | 9780429398292 | ||
003 | FlBoTFG | ||
005 | 20230516170538.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 200717s2020 flua fob 000 0 eng d | ||
040 |
_aOCoLC-P _beng _erda _epn _cOCoLC-P |
||
020 |
_a9780429675683 _q(e-book) |
||
020 |
_a0429675682 _q(e-book) |
||
020 |
_a9780429398292 _q(electronic bk.) |
||
020 |
_a0429398298 _q(electronic bk.) |
||
020 |
_a9780429675669 _q(electronic bk. : Mobipocket) |
||
020 |
_a0429675666 _q(electronic bk. : Mobipocket) |
||
020 |
_a9780429675676 _q(electronic bk. : EPUB) |
||
020 |
_a0429675674 _q(electronic bk. : EPUB) |
||
020 | _z9780367027056 | ||
035 |
_a(OCoLC)1196191610 _z(OCoLC)1200846302 |
||
035 | _a(OCoLC-P)1196191610 | ||
050 | 4 | _aQA300 | |
072 | 7 |
_aMAT _x000000 _2bisacsh |
|
072 | 7 |
_aMAT _x003000 _2bisacsh |
|
072 | 7 |
_aPBW _2bicssc |
|
082 | 0 | 4 |
_a515 _223 |
245 | 0 | 0 |
_aData science for mathematicians / _cedited by Nathan Carter. |
250 | _aFirst edition. | ||
264 | 1 |
_aBoca Raton : _bChapman & Hall/CRC, _c2020. |
|
300 |
_a1 online resource : _billustrations (black and white) |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
505 | 0 | _aProgramming with data / Sean Raleigh -- Linear algebra / Jeffery Leader -- Basic statistics / David White -- Clustering / Amy S. Wagaman -- Operations research / Alice Paul and Susan Martonosi -- Dimensionality reduction / Sofya Chepushtanova, Elin Farnell, Eric Kehoe, Michael Kirby, and Henry Kvinge -- Machine learning / Mahesh Agarwal, Nathan Carter, and David Oury -- Deep learning / Samuel S. Watson -- Topological data analysis / Henry Adams, Johnathan Bush, Joshua Mirth. | |
520 | _aMathematicians have skills that, if deepened in the right ways, would enable them to use data to answer questions important to them and others, and report those answers in compelling ways. Data science combines parts of mathematics, statistics, computer science. Gaining such power and the ability to teach has reinvigorated the careers of mathematicians. This handbook will assist mathematicians to better understand the opportunities presented by data science. As it applies to the curriculum, research, and career opportunities, data science is a fast-growing field. Contributors from both academics and industry present their views on these opportunities and how to advantage them. | ||
588 | _aOCLC-licensed vendor bibliographic record. | ||
650 | 0 |
_aMathematical analysis. _911486 |
|
650 | 0 |
_aMathematical statistics. _99597 |
|
650 | 0 |
_aData mining. _93907 |
|
650 | 0 |
_aBig data _xMathematics. _971394 |
|
650 | 7 |
_aMATHEMATICS / General _2bisacsh _971395 |
|
650 | 7 |
_aMATHEMATICS / Applied _2bisacsh _96859 |
|
700 | 1 |
_aCarter, Nathan C., _eeditor. _971396 |
|
856 | 4 | 0 |
_3Taylor & Francis _uhttps://www.taylorfrancis.com/books/9780429398292 |
856 | 4 | 2 |
_3OCLC metadata license agreement _uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf |
942 | _cEBK | ||
999 |
_c83018 _d83018 |