000 03488nam a22005415i 4500
001 978-3-031-01864-0
003 DE-He213
005 20240730163736.0
007 cr nn 008mamaa
008 220601s2018 sz | s |||| 0|eng d
020 _a9783031018640
_9978-3-031-01864-0
024 7 _a10.1007/978-3-031-01864-0
_2doi
050 4 _aTK5105.5-5105.9
072 7 _aUKN
_2bicssc
072 7 _aCOM043000
_2bisacsh
072 7 _aUKN
_2thema
082 0 4 _a004.6
_223
100 1 _aBonifati, Angela.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_980308
245 1 0 _aQuerying Graphs
_h[electronic resource] /
_cby Angela Bonifati, George Fletcher, Hannes Voigt, Nikolay Yakovets.
250 _a1st ed. 2018.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2018.
300 _aXIV, 166 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSynthesis Lectures on Data Management,
_x2153-5426
505 0 _aForeword -- Acknowledgments -- Introduction -- Data Models -- Query Languages -- Constraints -- Query Specification -- Data Structures and Indexes -- Query Processing -- Physical Operators -- Research Challenges -- Bibliography -- Authors' Biographies.
520 _aGraph data modeling and querying arises in many practical application domains such as social and biological networks where the primary focus is on concepts and their relationships and the rich patterns in these complex webs of interconnectivity. In this book, we present a concise unified view on the basic challenges which arise over the complete life cycle of formulating and processing queries on graph databases. To that purpose, we present all major concepts relevant to this life cycle, formulated in terms of a common and unifying ground: the property graph data model-the pre-dominant data model adopted by modern graph database systems. We aim especially to give a coherent and in-depth perspective on current graph querying and an outlook for future developments. Our presentation is self-contained, covering the relevant topics from: graph data models, graph query languages and graph query specification, graph constraints, and graph query processing. We conclude by indicatingmajor open research challenges towards the next generation of graph data management systems.
650 0 _aComputer networks .
_931572
650 0 _aData structures (Computer science).
_98188
650 0 _aInformation theory.
_914256
650 1 4 _aComputer Communication Networks.
_980309
650 2 4 _aData Structures and Information Theory.
_931923
700 1 _aFletcher, George.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_980310
700 1 _aVoigt, Hannes.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_980311
700 1 _aYakovets, Nikolay.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_980312
710 2 _aSpringerLink (Online service)
_980313
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031000911
776 0 8 _iPrinted edition:
_z9783031007361
776 0 8 _iPrinted edition:
_z9783031029929
830 0 _aSynthesis Lectures on Data Management,
_x2153-5426
_980314
856 4 0 _uhttps://doi.org/10.1007/978-3-031-01864-0
912 _aZDB-2-SXSC
942 _cEBK
999 _c84936
_d84936