000 03656nam a22005655i 4500
001 978-3-319-96562-8
003 DE-He213
005 20240730171336.0
007 cr nn 008mamaa
008 180720s2018 sz | s |||| 0|eng d
020 _a9783319965628
_9978-3-319-96562-8
024 7 _a10.1007/978-3-319-96562-8
_2doi
050 4 _aQA76.758
072 7 _aUMZ
_2bicssc
072 7 _aCOM051230
_2bisacsh
072 7 _aUMZ
_2thema
082 0 4 _a005.1
_223
245 1 0 _aMachine Learning for Dynamic Software Analysis: Potentials and Limits
_h[electronic resource] :
_bInternational Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers /
_cedited by Amel Bennaceur, Reiner Hähnle, Karl Meinke.
250 _a1st ed. 2018.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2018.
300 _aIX, 257 p. 38 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aProgramming and Software Engineering,
_x2945-9168 ;
_v11026
505 0 _aIntroduction -- Testing and Learning -- Extensions of Automata Learning -- Integrative Approaches.
520 _aMachine learning of software artefacts is an emerging area of interaction between the machine learning and software analysis communities. Increased productivity in software engineering relies on the creation of new adaptive, scalable tools that can analyse large and continuously changing software systems. These require new software analysis techniques based on machine learning, such as learning-based software testing, invariant generation or code synthesis. Machine learning is a powerful paradigm that provides novel approaches to automating the generation of models and other essential software artifacts. This volume originates from a Dagstuhl Seminar entitled "Machine Learning for Dynamic Software Analysis: Potentials and Limits" held in April 2016. The seminar focused on fostering a spirit of collaboration in order to share insights and to expand and strengthen the cross-fertilisation between the machine learning and software analysis communities. The book provides an overview of the machine learning techniques that can be used for software analysis and presents example applications of their use. Besides an introductory chapter, the book is structured into three parts: testing and learning, extension of automata learning, and integrative approaches.
650 0 _aSoftware engineering.
_94138
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer science.
_99832
650 1 4 _aSoftware Engineering.
_94138
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aTheory of Computation.
_998148
700 1 _aBennaceur, Amel.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998149
700 1 _aHähnle, Reiner.
_eeditor.
_0(orcid)
_10000-0001-8000-7613
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998150
700 1 _aMeinke, Karl.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_998151
710 2 _aSpringerLink (Online service)
_998152
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319965611
776 0 8 _iPrinted edition:
_z9783319965635
830 0 _aProgramming and Software Engineering,
_x2945-9168 ;
_v11026
_998153
856 4 0 _uhttps://doi.org/10.1007/978-3-319-96562-8
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c87530
_d87530