000 06594nam a22007095i 4500
001 978-3-030-33226-6
003 DE-He213
005 20240730174744.0
007 cr nn 008mamaa
008 191010s2019 sz | s |||| 0|eng d
020 _a9783030332266
_9978-3-030-33226-6
024 7 _a10.1007/978-3-030-33226-6
_2doi
050 4 _aQ337.5
050 4 _aTK7882.P3
072 7 _aUYQP
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYQP
_2thema
082 0 4 _a006.4
_223
245 1 0 _aMultimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy
_h[electronic resource] :
_b4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings /
_cedited by Dajiang Zhu, Jingwen Yan, Heng Huang, Li Shen, Paul M. Thompson, Carl-Fredrik Westin, Xavier Pennec, Sarang Joshi, Mads Nielsen, Tom Fletcher, Stanley Durrleman, Stefan Sommer.
250 _a1st ed. 2019.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2019.
300 _aXVII, 230 p. 113 illus., 91 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v11846
505 0 _aMBIA -- Non-rigid Registration of White Matter Tractography Using Coherent Point Drift Algorithm -- An Edge Enhanced SRGAN for MRI Super Resolution in Slice-selection Direction -- Exploring Functional Connectivity Biomarker in Autism Using Group-wise Sparse Representation -- Classifying Stages of Mild Cognitive Impairment via Augmented Graph Embedding -- Mapping the spatio-temporal functional coherence in the resting brain -- Species-Preserved Structural Connections Revealed by Sparse Tensor CCA -- Identification of Abnormal Cortical 3-hinge Folding Patterns on Autism Spectral Brains -- Exploring Brain Hemodynamic Response Patterns Via Deep Recurrent Autoencoder -- 3D Convolutional Long-short Term Memory Network for Spatiotemporal Modeling of fMRI Data -- Biological Knowledge Guided Deep Neural Network for Genotype-Phenotype Association Study -- Learning Human Cognition via fMRI Analysis Using 3D CNN and Graph Neural Network -- CU-Net: Cascaded U-Net with Loss Weighted Sampling for Brain Tumor Segmentation -- BrainPainter: A software for the visualisation of brain structures, biomarkers and associated pathological processes -- Structural Similarity based Anatomical and Functional Brain Imaging Fusion -- Multimodal Brain Tumor Segmentation Using Encoder-Decoder with Hierarchical Separable Convolution -- Prioritizing Amyloid Imaging Biomarkers in Alzheimer's Disease via Learning to Rank -- MFCA -- Diffeomorphic Metric Learning and Template Optimization for Registration-Based Predictive Models -- 3D mapping of serial histology sections with anomalies using a novel robust deformable registration algorithm -- Spatiotemporal Modeling for Image Time Series with Appearance Change: Application to Early Brain Development -- Surface Foliation Based Brain Morphometry Analysis -- Mixture Probabilistic Principal Geodesic Analysis -- A Geodesic Mixed Effects Model in Kendall's Shape Space -- An as-invariant-as-possible GL+(3)-based Statistical Shape Model.
520 _aThis book constitutes the refereed joint proceedings of the 4th International Workshop on Multimodal Brain Image Analysis, MBAI 2019, and the 7th International Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, in Shenzhen, China, in October 2019. The 16 full papers presented at MBAI 2019 and the 7 full papers presented at MFCA 2019 were carefully reviewed and selected. The MBAI papers intend to move forward the state of the art in multimodal brain image analysis, in terms of analysis methodologies, algorithms, software systems, validation approaches, benchmark datasets, neuroscience, and clinical applications. The MFCA papers are devoted to statistical and geometrical methods for modeling the variability of biological shapes. The goal is to foster the interactions between the mathematical community around shapes and the MICCAI community around computational anatomy applications.
650 0 _aPattern recognition systems.
_93953
650 0 _aComputer vision.
_9113922
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer networks .
_931572
650 1 4 _aAutomated Pattern Recognition.
_931568
650 2 4 _aComputer Vision.
_9113923
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aComputer Communication Networks.
_9113924
700 1 _aZhu, Dajiang.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113925
700 1 _aYan, Jingwen.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113926
700 1 _aHuang, Heng.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113927
700 1 _aShen, Li.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113928
700 1 _aThompson, Paul M.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113929
700 1 _aWestin, Carl-Fredrik.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113930
700 1 _aPennec, Xavier.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113931
700 1 _aJoshi, Sarang.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113932
700 1 _aNielsen, Mads.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113933
700 1 _aFletcher, Tom.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113934
700 1 _aDurrleman, Stanley.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113935
700 1 _aSommer, Stefan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9113936
710 2 _aSpringerLink (Online service)
_9113937
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030332259
776 0 8 _iPrinted edition:
_z9783030332273
830 0 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v11846
_9113938
856 4 0 _uhttps://doi.org/10.1007/978-3-030-33226-6
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c89605
_d89605