000 | 06594nam a22007095i 4500 | ||
---|---|---|---|
001 | 978-3-030-33226-6 | ||
003 | DE-He213 | ||
005 | 20240730174744.0 | ||
007 | cr nn 008mamaa | ||
008 | 191010s2019 sz | s |||| 0|eng d | ||
020 |
_a9783030332266 _9978-3-030-33226-6 |
||
024 | 7 |
_a10.1007/978-3-030-33226-6 _2doi |
|
050 | 4 | _aQ337.5 | |
050 | 4 | _aTK7882.P3 | |
072 | 7 |
_aUYQP _2bicssc |
|
072 | 7 |
_aCOM016000 _2bisacsh |
|
072 | 7 |
_aUYQP _2thema |
|
082 | 0 | 4 |
_a006.4 _223 |
245 | 1 | 0 |
_aMultimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy _h[electronic resource] : _b4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings / _cedited by Dajiang Zhu, Jingwen Yan, Heng Huang, Li Shen, Paul M. Thompson, Carl-Fredrik Westin, Xavier Pennec, Sarang Joshi, Mads Nielsen, Tom Fletcher, Stanley Durrleman, Stefan Sommer. |
250 | _a1st ed. 2019. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2019. |
|
300 |
_aXVII, 230 p. 113 illus., 91 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aImage Processing, Computer Vision, Pattern Recognition, and Graphics, _x3004-9954 ; _v11846 |
|
505 | 0 | _aMBIA -- Non-rigid Registration of White Matter Tractography Using Coherent Point Drift Algorithm -- An Edge Enhanced SRGAN for MRI Super Resolution in Slice-selection Direction -- Exploring Functional Connectivity Biomarker in Autism Using Group-wise Sparse Representation -- Classifying Stages of Mild Cognitive Impairment via Augmented Graph Embedding -- Mapping the spatio-temporal functional coherence in the resting brain -- Species-Preserved Structural Connections Revealed by Sparse Tensor CCA -- Identification of Abnormal Cortical 3-hinge Folding Patterns on Autism Spectral Brains -- Exploring Brain Hemodynamic Response Patterns Via Deep Recurrent Autoencoder -- 3D Convolutional Long-short Term Memory Network for Spatiotemporal Modeling of fMRI Data -- Biological Knowledge Guided Deep Neural Network for Genotype-Phenotype Association Study -- Learning Human Cognition via fMRI Analysis Using 3D CNN and Graph Neural Network -- CU-Net: Cascaded U-Net with Loss Weighted Sampling for Brain Tumor Segmentation -- BrainPainter: A software for the visualisation of brain structures, biomarkers and associated pathological processes -- Structural Similarity based Anatomical and Functional Brain Imaging Fusion -- Multimodal Brain Tumor Segmentation Using Encoder-Decoder with Hierarchical Separable Convolution -- Prioritizing Amyloid Imaging Biomarkers in Alzheimer's Disease via Learning to Rank -- MFCA -- Diffeomorphic Metric Learning and Template Optimization for Registration-Based Predictive Models -- 3D mapping of serial histology sections with anomalies using a novel robust deformable registration algorithm -- Spatiotemporal Modeling for Image Time Series with Appearance Change: Application to Early Brain Development -- Surface Foliation Based Brain Morphometry Analysis -- Mixture Probabilistic Principal Geodesic Analysis -- A Geodesic Mixed Effects Model in Kendall's Shape Space -- An as-invariant-as-possible GL+(3)-based Statistical Shape Model. | |
520 | _aThis book constitutes the refereed joint proceedings of the 4th International Workshop on Multimodal Brain Image Analysis, MBAI 2019, and the 7th International Workshop on Mathematical Foundations of Computational Anatomy, MFCA 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, in Shenzhen, China, in October 2019. The 16 full papers presented at MBAI 2019 and the 7 full papers presented at MFCA 2019 were carefully reviewed and selected. The MBAI papers intend to move forward the state of the art in multimodal brain image analysis, in terms of analysis methodologies, algorithms, software systems, validation approaches, benchmark datasets, neuroscience, and clinical applications. The MFCA papers are devoted to statistical and geometrical methods for modeling the variability of biological shapes. The goal is to foster the interactions between the mathematical community around shapes and the MICCAI community around computational anatomy applications. | ||
650 | 0 |
_aPattern recognition systems. _93953 |
|
650 | 0 |
_aComputer vision. _9113922 |
|
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aComputer networks . _931572 |
|
650 | 1 | 4 |
_aAutomated Pattern Recognition. _931568 |
650 | 2 | 4 |
_aComputer Vision. _9113923 |
650 | 2 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aComputer Communication Networks. _9113924 |
700 | 1 |
_aZhu, Dajiang. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9113925 |
|
700 | 1 |
_aYan, Jingwen. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9113926 |
|
700 | 1 |
_aHuang, Heng. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9113927 |
|
700 | 1 |
_aShen, Li. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9113928 |
|
700 | 1 |
_aThompson, Paul M. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9113929 |
|
700 | 1 |
_aWestin, Carl-Fredrik. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9113930 |
|
700 | 1 |
_aPennec, Xavier. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9113931 |
|
700 | 1 |
_aJoshi, Sarang. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9113932 |
|
700 | 1 |
_aNielsen, Mads. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9113933 |
|
700 | 1 |
_aFletcher, Tom. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9113934 |
|
700 | 1 |
_aDurrleman, Stanley. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9113935 |
|
700 | 1 |
_aSommer, Stefan. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9113936 |
|
710 | 2 |
_aSpringerLink (Online service) _9113937 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783030332259 |
776 | 0 | 8 |
_iPrinted edition: _z9783030332273 |
830 | 0 |
_aImage Processing, Computer Vision, Pattern Recognition, and Graphics, _x3004-9954 ; _v11846 _9113938 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-030-33226-6 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c89605 _d89605 |