000 04556nam a22005775i 4500
001 978-3-030-11166-3
003 DE-He213
005 20240730175150.0
007 cr nn 008mamaa
008 190108s2019 sz | s |||| 0|eng d
020 _a9783030111663
_9978-3-030-11166-3
024 7 _a10.1007/978-3-030-11166-3
_2doi
050 4 _aTA1634
072 7 _aUYQV
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYQV
_2thema
082 0 4 _a006.37
_223
245 1 0 _aComputational Methods and Clinical Applications in Musculoskeletal Imaging
_h[electronic resource] :
_b6th International Workshop, MSKI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers /
_cedited by Tomaž Vrtovec, Jianhua Yao, Guoyan Zheng, Jose M. Pozo.
250 _a1st ed. 2019.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2019.
300 _aXII, 153 p. 74 illus., 63 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v11404
505 0 _aAutomated Recognition of Erector Spinae Muscles and Their Skeletal Attachment Region via Deep Learning in Torso CT Images -- Fully automatic teeth segmentation in adult OPG images -- Fully Automatic Planning of Total Shoulder Arthroplasty without Segmentation: A Deep Learning Based Approach -- Deep Volumetric Shape Learning for Semantic Segmentation of the Hip Joint from 3D MR Images -- Pelvis segmentation using multi-pass U-net and iterative shape estimation -- Bone Adaptation as Level Set Motion -- Landmark Localisation in Radiographs Using Weighted Heatmap Displacement Voting -- Perthes Disease Classification Using Shape and Appearance Modelling -- Deep Learning Based Rib Centerline Extraction and Labeling -- Automatic Wrist Fracture Detection From Posteroanterior and Lateral Radiographs: A Deep Learning-Based Approach -- Bone Reconstruction and Depth Control During Laser Ablation -- Automated Dynamic 3D Ultrasound Assessment of Developmental Dysplasia of the Infant Hip -- Automated Measurement of Pelvic Incidence from X-Ray Images.
520 _aThis book constitutes the refereed proceedings of the 6th International Workshop on Computational Methods and Clinical Applications for Musculoskeletal Imaging, MSKI 2018, held in conjunction with MICCAI 2018, in Granada, Spain, in September 2018. The 13 workshop papers were carefully reviewed and selected for inclusion in this volume. Topics of interest include all major aspects of musculoskeletal imaging, for example: clinical applications of musculoskeletal computational imaging; computer-aided detection and diagnosis of conditions of the bones, muscles and joints; image-guided musculoskeletal surgery and interventions; image-based assessment and monitoring of surgical and pharmacological treatment; segmentation, registration, detection, localization and visualization of the musculoskeletal anatomy; statistical and geometrical modeling of the musculoskeletal shape and appearance; image-based microstructural characterization of musculoskeletal tissue; novel techniques formusculoskeletal imaging.
650 0 _aComputer vision.
_9115673
650 0 _aArtificial intelligence.
_93407
650 0 _aMedical informatics.
_94729
650 1 4 _aComputer Vision.
_9115674
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aHealth Informatics.
_931799
700 1 _aVrtovec, Tomaž.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9115675
700 1 _aYao, Jianhua.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9115676
700 1 _aZheng, Guoyan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9115677
700 1 _aPozo, Jose M.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9115678
710 2 _aSpringerLink (Online service)
_9115679
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030111656
776 0 8 _iPrinted edition:
_z9783030111670
830 0 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v11404
_9115680
856 4 0 _uhttps://doi.org/10.1007/978-3-030-11166-3
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c89804
_d89804