000 05352nam a22006255i 4500
001 978-3-031-09002-8
003 DE-He213
005 20240730175502.0
007 cr nn 008mamaa
008 220714s2022 sz | s |||| 0|eng d
020 _a9783031090028
_9978-3-031-09002-8
024 7 _a10.1007/978-3-031-09002-8
_2doi
050 4 _aTA1634
072 7 _aUYQV
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYQV
_2thema
082 0 4 _a006.37
_223
245 1 0 _aBrainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
_h[electronic resource] :
_b7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part II /
_cedited by Alessandro Crimi, Spyridon Bakas.
250 _a1st ed. 2022.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2022.
300 _aXXIII, 601 p. 225 illus., 195 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v12963
505 0 _aBiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor Segmentation -- Optimized U-Net for Brain Tumor Segmentation -- MS UNet: Multi-Scale 3D UNet for Brain Tumor Segmentation -- Evaluating Scale Attention Network for Automatic Brain Tumor Segmentation with Large Multi-parametric MRI Database -- Orthogonal-Nets: A large ensemble of 2D neural networks for 3D Brain Tumor Segmentation -- Feature Learning by Attention and Ensemble with 3D U-Net to Glioma Tumor Segmentation -- MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks -- Brain Tumor Segmentation with Patch-based 3D Attention UNet from Multi-parametric MRI -- Dice Focal Loss with ResNet-like Encoder-Decoder architecture in 3D Brain Tumor Segmentation -- HNF-Netv2 for Brain Tumor Segmentation using multi-modal MR Imaging -- Disparity Autoencoders for Multi-class Brain Tumor Segmentation -- Disparity Autoencoders for Multi-class Brain Tumor Segmentation -- Disparity Autoencoders for Multi-class BrainTumor Segmentation -- Brain Tumor Segmentation in Multi-parametric Magnetic Resonance Imaging using Model Ensembling and Super-resolution -- Quality-aware Model Ensemble for Brain Tumor Segmentation -- Redundancy Reduction in Semantic Segmentation of 3D Brain Tumor MRIs -- An Ensemble Approach to Automatic Brain Tumor Segmentation -- Extending nn-UNet for brain tumor segmentation -- Generalized Wasserstein Dice Loss, Test-time Augmentation, and Transformers for the BraTS 2021 challenge -- Coupling nnU-Nets with Expert Knowledge for Accurate Brain Tumor Segmentation from MRI -- Deep Learning based Ensemble Approach for 3D MRI Brain Tumor Segmentation -- Prediction of MGMT Methylation Status of Glioblastoma using Radiomics and Latent Space Shape Features -- bining CNNs With Transformer for Multimodal 3D MRI Brain Tumor Segmentation -- Automatic Brain Tumor Segmentation with a Bridge-Unet deeply supervised enhanced with downsampling pooling combination, Atrous Spatial Pyramid Pooling, Squeeze-and-Excitation and EvoNorm.
520 _aThis two-volume set LNCS 12962 and 12963 constitutes the thoroughly refereed proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021, as well as the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge, the Federated Tumor Segmentation (FeTS) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the challenge on Quantification of Uncertainties in Biomedical Image Quantification (QUBIQ). These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in September 2021. The 91 revised papers presented in these volumes were selected form 151 submissions. Due to COVID-19 pandemic the conference was held virtually.
650 0 _aComputer vision.
_9116891
650 0 _aMedical informatics.
_94729
650 0 _aSocial sciences
_xData processing.
_983360
650 0 _aApplication software.
_9116892
650 0 _aEducation
_xData processing.
_982607
650 0 _aArtificial intelligence.
_93407
650 1 4 _aComputer Vision.
_9116893
650 2 4 _aHealth Informatics.
_931799
650 2 4 _aComputer Application in Social and Behavioral Sciences.
_931815
650 2 4 _aComputer and Information Systems Applications.
_9116894
650 2 4 _aComputers and Education.
_941129
650 2 4 _aArtificial Intelligence.
_93407
700 1 _aCrimi, Alessandro.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9116895
700 1 _aBakas, Spyridon.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9116896
710 2 _aSpringerLink (Online service)
_9116897
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031090011
776 0 8 _iPrinted edition:
_z9783031090035
830 0 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v12963
_923263
856 4 0 _uhttps://doi.org/10.1007/978-3-031-09002-8
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c89948
_d89948