000 06867nam a22007695i 4500
001 978-3-030-01364-6
003 DE-He213
005 20240730175916.0
007 cr nn 008mamaa
008 181016s2018 sz | s |||| 0|eng d
020 _a9783030013646
_9978-3-030-01364-6
024 7 _a10.1007/978-3-030-01364-6
_2doi
050 4 _aTA1634
072 7 _aUYQV
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYQV
_2thema
082 0 4 _a006.37
_223
245 1 0 _aIntravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
_h[electronic resource] :
_b7th Joint International Workshop, CVII-STENT 2018 and Third International Workshop, LABELS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings /
_cedited by Danail Stoyanov, Zeike Taylor, Simone Balocco, Raphael Sznitman, Anne Martel, Lena Maier-Hein, Luc Duong, Guillaume Zahnd, Stefanie Demirci, Shadi Albarqouni, Su-Lin Lee, Stefano Moriconi, Veronika Cheplygina, Diana Mateus, Emanuele Trucco, Eric Granger, Pierre Jannin.
250 _a1st ed. 2018.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2018.
300 _aXVII, 202 p. 111 illus., 65 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v11043
505 0 _aBlood-flow estimation in the hepatic arteries based on 3D/2D angiography registration -- Automated quantification of blood flow velocity from time-resolved CT angiography -- Multiple device segmentation for fluoroscopic imaging using multi-task learning -- Segmentation of the Aorta Using Active Contours with Histogram-Based Descriptors -- Layer Separation in X-ray Angiograms for Vessel Enhancement with Fully Convolutional Network -- Generation of a HER2 breast cancer gold-standard using supervised learning from multiple experts -- Deep Learning-based Detection and Segmentation for BVS Struts in IVOCT Images -- Towards Automatic Measurement of Type B Aortic Dissection Parameters -- Prediction of FFR from IVUS Images using Machine Learning -- Deep Learning Retinal Vessel Segmentation From a Single Annotated Example: An Application of Cyclic Generative Adversarial Neural Networks -- An Efficient and Comprehensive Labeling Tool for Large-scale Annotation of Fundus Images -- Crowd disagreement about medical images is informative -- Imperfect Segmentation Labels: How Much Do They Matter? -- Crowdsourcing annotation of surgical instruments in videos of cataract surgery -- Four-dimensional ASL MR angiography phantoms with noise learned by neural styling -- Feature learning based on visual similarity triplets in medical image analysis: A case study of emphysema in chest CT scans -- Capsule Networks against Medical Imaging Data Challenges -- Fully Automatic Segmentation of Coronary Arteries based on Deep Neural Network in Intravascular Ultrasound Images -- Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos -- Radiology Objects in COntext (ROCO) -- Improving out-of-sample prediction of quality of MRIQC.
520 _aThis book constitutes the refereed joint proceedings of the 7th Joint International Workshop on Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2018, and the Third International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2018, held in conjunction with the 21th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 9 full papers presented at CVII-STENT 2017 and the 12 full papers presented at LABELS 2017 were carefully reviewed and selected. The CVII-STENT papers feature the state of the art in imaging, treatment, and computer-assisted intervention in the field of endovascular interventions. The LABELS papers present a variety of approaches for dealing with few labels, from transfer learning to crowdsourcing.
650 0 _aComputer vision.
_9118242
650 0 _aMedical informatics.
_94729
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer engineering.
_910164
650 0 _aComputer networks .
_931572
650 1 4 _aComputer Vision.
_9118243
650 2 4 _aHealth Informatics.
_931799
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aComputer Engineering and Networks.
_9118244
700 1 _aStoyanov, Danail.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118245
700 1 _aTaylor, Zeike.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118246
700 1 _aBalocco, Simone.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118247
700 1 _aSznitman, Raphael.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118248
700 1 _aMartel, Anne.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118249
700 1 _aMaier-Hein, Lena.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118250
700 1 _aDuong, Luc.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118251
700 1 _aZahnd, Guillaume.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118252
700 1 _aDemirci, Stefanie.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118253
700 1 _aAlbarqouni, Shadi.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118254
700 1 _aLee, Su-Lin.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118255
700 1 _aMoriconi, Stefano.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118256
700 1 _aCheplygina, Veronika.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118257
700 1 _aMateus, Diana.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118258
700 1 _aTrucco, Emanuele.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118259
700 1 _aGranger, Eric.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118260
700 1 _aJannin, Pierre.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9118261
710 2 _aSpringerLink (Online service)
_9118262
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030013639
776 0 8 _iPrinted edition:
_z9783030013653
830 0 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v11043
_9118263
856 4 0 _uhttps://doi.org/10.1007/978-3-030-01364-6
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c90096
_d90096