000 | 06304nam a22006975i 4500 | ||
---|---|---|---|
001 | 978-3-031-25891-6 | ||
003 | DE-He213 | ||
005 | 20240730180520.0 | ||
007 | cr nn 008mamaa | ||
008 | 230309s2023 sz | s |||| 0|eng d | ||
020 |
_a9783031258916 _9978-3-031-25891-6 |
||
024 | 7 |
_a10.1007/978-3-031-25891-6 _2doi |
|
050 | 4 | _aHD30.19-.29 | |
072 | 7 |
_aUF _2bicssc |
|
072 | 7 |
_aCOM005000 _2bisacsh |
|
072 | 7 |
_aUXJ _2thema |
|
082 | 0 | 4 |
_a005.3 _223 |
245 | 1 | 0 |
_aMachine Learning, Optimization, and Data Science _h[electronic resource] : _b8th International Conference, LOD 2022, Certosa di Pontignano, Italy, September 18-22, 2022, Revised Selected Papers, Part II / _cedited by Giuseppe Nicosia, Varun Ojha, Emanuele La Malfa, Gabriele La Malfa, Panos Pardalos, Giuseppe Di Fatta, Giovanni Giuffrida, Renato Umeton. |
250 | _a1st ed. 2023. | ||
264 | 1 |
_aCham : _bSpringer Nature Switzerland : _bImprint: Springer, _c2023. |
|
300 |
_aXXIV, 582 p. 185 illus., 152 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Computer Science, _x1611-3349 ; _v13811 |
|
505 | 0 | _aExplainable Machine Learning for Drug Shortage Prediction in a Pandemic Setting -- Intelligent Robotic Process Automation for Supplier Document Management on E-Procurement Platforms -- Batch Bayesian Quadrature with Batch Updating Using Future Uncertainty Sampling -- Sensitivity analysis of Engineering Structures Utilizing Artificial Neural Networks and Polynomial -- Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models -- Deep Learning -- Machine Learning -- Reinforcement Learning -- Neural Networks -- Deep Reinforcement Learning -- Optimization -- Global Optimization -- Multi-Objective Optimization -- Computational Optimization -- Data Science -- Big Data -- Data Analytics -- Artificial Intelligence -- Detection of Morality in Tweets based on the Moral Foundation Theory -- Matrix completion for the prediction of yearly country and industry-level CO2 emissions -- A Benchmark for Real-Time Anomaly Detection Algorithms Applied in Industry 4.0 -- A Matrix Factorization-based Drug-virus Link Prediction Method for SARS CoV -- Drug Prioritization -- Hyperbolic Graph Codebooks -- A Kernel-Based Multilayer Perceptron Framework to Identify Pathways Related to Cancer Stages -- Loss Function with Memory for Trustworthiness Threshold Learning: Case of Face and Facial Expression Recognition -- Machine learning approaches for predicting Crystal Systems: a brief review and a case study -- LS-PON: a Prediction-based Local Search for Neural Architecture Search -- Local optimisation of Nystrm samples through stochastic gradient descent -- Explainable Machine Learning for Drug Shortage Prediction in a Pandemic Setting -- Intelligent Robotic Process Automation for Supplier Document Management on E-Procurement Platforms -- Batch Bayesian Quadrature with Batch Updating Using Future Uncertainty Sampling -- Sensitivity analysis of Engineering Structures Utilizing Artificial Neural Networks and Polynomial -- Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models -- Deep Learning -- Machine Learning -- Reinforcement Learning -- Neural Networks -- Deep Reinforcement Learning -- Optimization -- Global Optimization -- Multi-Objective Optimization -- Computational Optimization -- Data Science -- Big Data -- Data Analytics -- Artificial Intelligence. | |
520 | _aThis two-volume set, LNCS 13810 and 13811, constitutes the refereed proceedings of the 8th International Conference on Machine Learning, Optimization, and Data Science, LOD 2022, together with the papers of the Second Symposium on Artificial Intelligence and Neuroscience, ACAIN 2022. The total of 84 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 226 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, neuroscience, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications. | ||
650 | 0 |
_aInformation technology _xManagement. _95368 |
|
650 | 0 |
_aComputer networks . _931572 |
|
650 | 0 |
_aElectronic digital computers _xEvaluation. _921495 |
|
650 | 0 |
_aComputer systems. _9120535 |
|
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aMachine learning. _91831 |
|
650 | 1 | 4 |
_aComputer Application in Administrative Data Processing. _931588 |
650 | 2 | 4 |
_aComputer Communication Networks. _9120536 |
650 | 2 | 4 |
_aSystem Performance and Evaluation. _932047 |
650 | 2 | 4 |
_aComputer System Implementation. _938514 |
650 | 2 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aMachine Learning. _91831 |
700 | 1 |
_aNicosia, Giuseppe. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120537 |
|
700 | 1 |
_aOjha, Varun. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120538 |
|
700 | 1 |
_aLa Malfa, Emanuele. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120539 |
|
700 | 1 |
_aLa Malfa, Gabriele. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120540 |
|
700 | 1 |
_aPardalos, Panos. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120541 |
|
700 | 1 |
_aDi Fatta, Giuseppe. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120542 |
|
700 | 1 |
_aGiuffrida, Giovanni. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120543 |
|
700 | 1 |
_aUmeton, Renato. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120544 |
|
710 | 2 |
_aSpringerLink (Online service) _9120545 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031258909 |
776 | 0 | 8 |
_iPrinted edition: _z9783031258923 |
830 | 0 |
_aLecture Notes in Computer Science, _x1611-3349 ; _v13811 _923263 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-031-25891-6 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c90362 _d90362 |