000 06304nam a22006975i 4500
001 978-3-031-25891-6
003 DE-He213
005 20240730180520.0
007 cr nn 008mamaa
008 230309s2023 sz | s |||| 0|eng d
020 _a9783031258916
_9978-3-031-25891-6
024 7 _a10.1007/978-3-031-25891-6
_2doi
050 4 _aHD30.19-.29
072 7 _aUF
_2bicssc
072 7 _aCOM005000
_2bisacsh
072 7 _aUXJ
_2thema
082 0 4 _a005.3
_223
245 1 0 _aMachine Learning, Optimization, and Data Science
_h[electronic resource] :
_b8th International Conference, LOD 2022, Certosa di Pontignano, Italy, September 18-22, 2022, Revised Selected Papers, Part II /
_cedited by Giuseppe Nicosia, Varun Ojha, Emanuele La Malfa, Gabriele La Malfa, Panos Pardalos, Giuseppe Di Fatta, Giovanni Giuffrida, Renato Umeton.
250 _a1st ed. 2023.
264 1 _aCham :
_bSpringer Nature Switzerland :
_bImprint: Springer,
_c2023.
300 _aXXIV, 582 p. 185 illus., 152 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v13811
505 0 _aExplainable Machine Learning for Drug Shortage Prediction in a Pandemic Setting -- Intelligent Robotic Process Automation for Supplier Document Management on E-Procurement Platforms -- Batch Bayesian Quadrature with Batch Updating Using Future Uncertainty Sampling -- Sensitivity analysis of Engineering Structures Utilizing Artificial Neural Networks and Polynomial -- Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models -- Deep Learning -- Machine Learning -- Reinforcement Learning -- Neural Networks -- Deep Reinforcement Learning -- Optimization -- Global Optimization -- Multi-Objective Optimization -- Computational Optimization -- Data Science -- Big Data -- Data Analytics -- Artificial Intelligence -- Detection of Morality in Tweets based on the Moral Foundation Theory -- Matrix completion for the prediction of yearly country and industry-level CO2 emissions -- A Benchmark for Real-Time Anomaly Detection Algorithms Applied in Industry 4.0 -- A Matrix Factorization-based Drug-virus Link Prediction Method for SARS CoV -- Drug Prioritization -- Hyperbolic Graph Codebooks -- A Kernel-Based Multilayer Perceptron Framework to Identify Pathways Related to Cancer Stages -- Loss Function with Memory for Trustworthiness Threshold Learning: Case of Face and Facial Expression Recognition -- Machine learning approaches for predicting Crystal Systems: a brief review and a case study -- LS-PON: a Prediction-based Local Search for Neural Architecture Search -- Local optimisation of Nystrm samples through stochastic gradient descent -- Explainable Machine Learning for Drug Shortage Prediction in a Pandemic Setting -- Intelligent Robotic Process Automation for Supplier Document Management on E-Procurement Platforms -- Batch Bayesian Quadrature with Batch Updating Using Future Uncertainty Sampling -- Sensitivity analysis of Engineering Structures Utilizing Artificial Neural Networks and Polynomial -- Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models -- Deep Learning -- Machine Learning -- Reinforcement Learning -- Neural Networks -- Deep Reinforcement Learning -- Optimization -- Global Optimization -- Multi-Objective Optimization -- Computational Optimization -- Data Science -- Big Data -- Data Analytics -- Artificial Intelligence.
520 _aThis two-volume set, LNCS 13810 and 13811, constitutes the refereed proceedings of the 8th International Conference on Machine Learning, Optimization, and Data Science, LOD 2022, together with the papers of the Second Symposium on Artificial Intelligence and Neuroscience, ACAIN 2022. The total of 84 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 226 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, neuroscience, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.
650 0 _aInformation technology
_xManagement.
_95368
650 0 _aComputer networks .
_931572
650 0 _aElectronic digital computers
_xEvaluation.
_921495
650 0 _aComputer systems.
_9120535
650 0 _aArtificial intelligence.
_93407
650 0 _aMachine learning.
_91831
650 1 4 _aComputer Application in Administrative Data Processing.
_931588
650 2 4 _aComputer Communication Networks.
_9120536
650 2 4 _aSystem Performance and Evaluation.
_932047
650 2 4 _aComputer System Implementation.
_938514
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aMachine Learning.
_91831
700 1 _aNicosia, Giuseppe.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9120537
700 1 _aOjha, Varun.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9120538
700 1 _aLa Malfa, Emanuele.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9120539
700 1 _aLa Malfa, Gabriele.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9120540
700 1 _aPardalos, Panos.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9120541
700 1 _aDi Fatta, Giuseppe.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9120542
700 1 _aGiuffrida, Giovanni.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9120543
700 1 _aUmeton, Renato.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9120544
710 2 _aSpringerLink (Online service)
_9120545
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031258909
776 0 8 _iPrinted edition:
_z9783031258923
830 0 _aLecture Notes in Computer Science,
_x1611-3349 ;
_v13811
_923263
856 4 0 _uhttps://doi.org/10.1007/978-3-031-25891-6
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c90362
_d90362