000 | 03880nam a22005655i 4500 | ||
---|---|---|---|
001 | 978-3-031-24378-3 | ||
003 | DE-He213 | ||
005 | 20240730180522.0 | ||
007 | cr nn 008mamaa | ||
008 | 230320s2023 sz | s |||| 0|eng d | ||
020 |
_a9783031243783 _9978-3-031-24378-3 |
||
024 | 7 |
_a10.1007/978-3-031-24378-3 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aAdvanced Analytics and Learning on Temporal Data _h[electronic resource] : _b7th ECML PKDD Workshop, AALTD 2022, Grenoble, France, September 19-23, 2022, Revised Selected Papers / _cedited by Thomas Guyet, Georgiana Ifrim, Simon Malinowski, Anthony Bagnall, Patrick Shafer, Vincent Lemaire. |
250 | _a1st ed. 2023. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2023. |
|
300 |
_aXVI, 197 p. 86 illus., 58 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v13812 |
|
505 | 0 | _aOral Presentation -- Adjustable Context-aware Transformer -- Clustering of time series based on forecasting performance of global models -- Experimental study of time series forecasting methods for groundwater level prediction -- Fast Time Series Classification with Random Symbolic Subsequences -- RESIST: Robust Transformer for Unsupervised Time Series Anomaly Detection -- Window Size Selection In Unsupervised Time Series Analytics: A Review and Benchmark -- Poster Presentation -- Application of Attention mechanism combined with Long Short-Term Memory for forecasting Dissolved Oxygen in Ganga River -- Data Augmentation for Time Series Classification with Deep Learning -- Dimension selection strategies for multivariate time series classification with HIVE-COTEv2.0 -- EDGAR: Embedded Detection of Gunshots by AI in Real-time -- Identification of the Best Accelerometer Features and Time-scale to Detect Disturbances in Calves -- ODIN AD: a frameworksupporting the life-cycle of time series anomaly detection applications. | |
520 | _aThis book constitutes the refereed proceedings of the 7th ECML PKDD Workshop, AALTD 2022, held in Grenoble, France, during September 19-23, 2022. The 12 full papers included in this book were carefully reviewed and selected from 21 submissions. They were organized in topical sections as follows: Oral presentation and poster presentation. | ||
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
700 | 1 |
_aGuyet, Thomas. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120556 |
|
700 | 1 |
_aIfrim, Georgiana. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120557 |
|
700 | 1 |
_aMalinowski, Simon. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120558 |
|
700 | 1 |
_aBagnall, Anthony. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120559 |
|
700 | 1 |
_aShafer, Patrick. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120560 |
|
700 | 1 |
_aLemaire, Vincent. _eeditor. _0(orcid) _10000-0002-6030-2356 _4edt _4http://id.loc.gov/vocabulary/relators/edt _9120561 |
|
710 | 2 |
_aSpringerLink (Online service) _9120562 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031243776 |
776 | 0 | 8 |
_iPrinted edition: _z9783031243790 |
830 | 0 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v13812 _9120563 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-031-24378-3 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c90365 _d90365 |