000 06458nam a22005895i 4500
001 978-3-642-37012-0
003 DE-He213
005 20240730184651.0
007 cr nn 008mamaa
008 130321s2013 gw | s |||| 0|eng d
020 _a9783642370120
_9978-3-642-37012-0
024 7 _a10.1007/978-3-642-37012-0
_2doi
050 4 _aTA1501-1820
050 4 _aTA1634
072 7 _aUYT
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYT
_2thema
082 0 4 _a006
_223
100 1 _aGanesalingam, Mohan.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_9136244
245 1 4 _aThe Language of Mathematics
_h[electronic resource] :
_bA Linguistic and Philosophical Investigation /
_cby Mohan Ganesalingam.
250 _a1st ed. 2013.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aXX, 260 p. 15 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aTheoretical Computer Science and General Issues,
_x2512-2029 ;
_v7805
505 0 _aIntroduction.-1.1 Challenges -- 1.2 Concepts.-1.2.1 Linguistics and Mathematic.-1.2.2 Time -- 1.2.3 Full Adaptivity -- .3 Scope -- 1.4 Structure -- 1.5 Previous Analyses -- 1.5.1 Ranta -- 1.5.2 de Bruijn -- 1.5.3 Computer Languages -- 1.5.4 Other Work -- 2 The Language of Mathematics -- 2.1 Text and Symbol -- 2.2 Adaptivity -- 2.3 Textual Mathematics -- 2.4 Symbolic Mathematics. -2.4.1 Ranta's Account and Its Limitations -- 2.4.2 Surface Phenomena -- 2.4.3 Grammatical Status -- 2.4.4 Variables -- 2.4.5 Presuppositions -- 2.4.6 Symbolic Constructions -- 2.5 Rhetorical Structure -- 2.5.1 Blocks -- 2.5.2 Variables and Assumptions -- 2.6 Reanalysis -- 3 Theoretical Framework -- 3.1 Syntax -- 3.2 Types -- 3.3 Semantics -- 3.3.1 The Inadequacy of First-Order Logic -- 3.3.2 Discourse Representation Theory -- 3.3.3 Semantic Functions -- 3.3.4 Representing Variables -- 3.3.5 Localisable Presuppositions -- 3.3.6 Plurals -- 3.3.7 Compositionality -- 3.3.8 Ambiguity and Type -- 3.4 Adaptivity -- 3.4.1 Definitions in Mathematics -- 3.4.2 Real Definitions and Functional Categories -- 3.5 Rhetorical Structure -- 3.5.1 Explanation -- 3.5.2 Blocks -- 3.5.3 Variables and Assumptions -- 3.5.4 Related Work: DRT in NaProChe -- 3.6 Conclusion -- 4 Ambiguity.-4.1 Ambiguity in Symbolic Mathematics.-4.1.1 Ambiguity in Symbolic Material.-4.1.2 Survey: Ambiguity in Formal Languages.-4.1.3 Failure of Standard Mechanisms -- 4.1.4 Discussion.-4.1.5 Disambiguation without Type -- 4.2 Ambiguity in Textual Mathematics.-4.2.1 Survey: Ambiguity in Natural Languages.-4.2.2 Ambiguity in Textual Mathematics -- 4.2.3 Disambiguation without Type -- 4.3 Text and Symbol -- 4.3.1 Dependence of Symbol on Text -- 4.3.2 Dependence of Text on Symbol -- 4.3.3 Text and Symbol: Conclusion -- 4.4 Conclusion -- 5 Type -- 5.1 Distinguishing Notions of Type -- 5.1.1 Types as Formal Tags -- 5.1.2 Types as Properties -- 5.2 Notions of Type in Mathematics -- 5.2.1 Aspect as Formal Tags -- .2.2 Aspect as Properties -- 5.3 Type Distinctions in Mathematics -- 5.3.1 Methodology -- 5.3.2 Examining the Foundations -- 5.3.3 Simple Distinctions -- 5.3.4 Non-extensionality.-5.3.5 Homogeneity and Open Types -- 5.4 Types in Mathematics -- 5.4.1 Presenting Type: Syntax and Semantics -- 5.4.2 Fundamental Type -- 5.4.3 Relational Type -- 5.4.4 Inferential Type -- 5.4.5 Type Inference -- 5.4.6 Type Parametrism -- 5.4.7 Subtyping -- 5.4.8 Type Coercion -- 5.5 Types and Type Theory -- 6 TypedParsing -- 6.1 Type Assignment -- .1.1 Mechanisms -- 6.1.2 Example -- 6.2 Type Requirements -- 6.3 Parsing -- 6.3.1 Type -- 6.3.2 Variables.-6.3.3 Structural Disambiguation -- 6.3.4 Type Cast Minimisation -- 6.3.5 Symmetry Breaking -- 6.4 Example -- 6.5 Further Work -- 7 Foundations -- 7.1 Approach -- 7.2 False Starts -- 7.2.1 All Objects as Sets -- 7.2.2 Hierarchy of Numbers -- 7.2.3 Summary of Standard Picture -- 7.2.4 Invisible Embeddings -- 7.2.5 Introducing Ontogeny -- 7.2.6 Redefinition -- 7.2.7 Manual Replacement -- 7.2.8 Identification and Conservativity -- 7.2.9 Isomorphisms Are Inadequate -- 7.3 Central Problems -- 7.3.1 Ontology and Epistemology -- 7.3.2 Identification -- 7.3.3 Ontogeny -- 7.4 Formalism -- 7.4.1 Abstraction -- 7.4.2 Identification -- 7.5 Application.-7.5.1 Simple Objects.-7.5.2 Natural Numbers -- 7.5.3 Integers -- 7.5.4 Other Numbers -- 7.5.5 Sets and Categories -- 7.5.6 Numbers and Late Identification -- 7.6 Further Work -- 8 Extensions -- 8.1 Textual Extensions -- 8.2 Symbolic Extensions -- 8.3 Covert Arguments -- Conclusion.
520 _aThe Language of Mathematics was awarded the E.W. Beth Dissertation Prize for outstanding dissertations in the fields of logic, language, and information. It innovatively combines techniques from linguistics, philosophy of mathematics, and computation to give the first wide-ranging analysis of mathematical language. It focuses particularly on a method for determining the complete meaning of mathematical texts and on resolving technical deficiencies in all standard accounts of the foundations of mathematics.   "The thesis does far more than is required for a PhD: it is more like a lifetime's work packed into three years, and is a truly exceptional achievement." Timothy Gowers.
650 0 _aImage processing
_xDigital techniques.
_94145
650 0 _aComputer vision.
_9136245
650 0 _aMachine theory.
_9136246
650 0 _aNatural language processing (Computer science).
_94741
650 0 _aArtificial intelligence.
_93407
650 1 4 _aComputer Imaging, Vision, Pattern Recognition and Graphics.
_931569
650 2 4 _aFormal Languages and Automata Theory.
_9136247
650 2 4 _aNatural Language Processing (NLP).
_931587
650 2 4 _aArtificial Intelligence.
_93407
710 2 _aSpringerLink (Online service)
_9136248
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783642370113
776 0 8 _iPrinted edition:
_z9783642370137
830 0 _aTheoretical Computer Science and General Issues,
_x2512-2029 ;
_v7805
_9136249
856 4 0 _uhttps://doi.org/10.1007/978-3-642-37012-0
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c92421
_d92421