000 | 03771nam a22006375i 4500 | ||
---|---|---|---|
001 | 978-3-540-31728-9 | ||
003 | DE-He213 | ||
005 | 20240730191930.0 | ||
007 | cr nn 008mamaa | ||
008 | 100722s2005 gw | s |||| 0|eng d | ||
020 |
_a9783540317289 _9978-3-540-31728-9 |
||
024 | 7 |
_a10.1007/11559887 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aDeterministic and Statistical Methods in Machine Learning _h[electronic resource] : _bFirst International Workshop, Sheffield, UK, September 7-10, 2004. Revised Lectures / _cedited by Joab Winkler, Neil Lawrence, Mahesan Niranjan. |
250 | _a1st ed. 2005. | ||
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2005. |
|
300 |
_aVIII, 341 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v3635 |
|
505 | 0 | _aObject Recognition via Local Patch Labelling -- Multi Channel Sequence Processing -- Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis -- Extensions of the Informative Vector Machine -- Efficient Communication by Breathing -- Guiding Local Regression Using Visualisation -- Transformations of Gaussian Process Priors -- Kernel Based Learning Methods: Regularization Networks and RBF Networks -- Redundant Bit Vectors for Quickly Searching High-Dimensional Regions -- Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis -- Ensemble Algorithms for Feature Selection -- Can Gaussian Process Regression Be Made Robust Against Model Mismatch? -- Understanding Gaussian Process Regression Using the Equivalent Kernel -- Integrating Binding Site Predictions Using Non-linear Classification Methods -- Support Vector Machine to Synthesise Kernels -- Appropriate Kernel Functions for Support Vector Machine Learning with Sequences of Symbolic Data -- Variational Bayes Estimation of Mixing Coefficients -- A Comparison of Condition Numbers for the Full Rank Least Squares Problem -- SVM Based Learning System for Information Extraction. | |
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aMachine theory. _9147900 |
|
650 | 0 |
_aDatabase management. _93157 |
|
650 | 0 |
_aInformation storage and retrieval systems. _922213 |
|
650 | 0 |
_aComputer vision. _9147901 |
|
650 | 0 |
_aPattern recognition systems. _93953 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aFormal Languages and Automata Theory. _9147902 |
650 | 2 | 4 |
_aDatabase Management. _93157 |
650 | 2 | 4 |
_aInformation Storage and Retrieval. _923927 |
650 | 2 | 4 |
_aComputer Vision. _9147903 |
650 | 2 | 4 |
_aAutomated Pattern Recognition. _931568 |
700 | 1 |
_aWinkler, Joab. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9147904 |
|
700 | 1 |
_aLawrence, Neil. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9147905 |
|
700 | 1 |
_aNiranjan, Mahesan. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9147906 |
|
710 | 2 |
_aSpringerLink (Online service) _9147907 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783540290735 |
776 | 0 | 8 |
_iPrinted edition: _z9783540816072 |
830 | 0 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v3635 _9147908 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/11559887 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c93982 _d93982 |