000 03771nam a22006375i 4500
001 978-3-540-31728-9
003 DE-He213
005 20240730191930.0
007 cr nn 008mamaa
008 100722s2005 gw | s |||| 0|eng d
020 _a9783540317289
_9978-3-540-31728-9
024 7 _a10.1007/11559887
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aDeterministic and Statistical Methods in Machine Learning
_h[electronic resource] :
_bFirst International Workshop, Sheffield, UK, September 7-10, 2004. Revised Lectures /
_cedited by Joab Winkler, Neil Lawrence, Mahesan Niranjan.
250 _a1st ed. 2005.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2005.
300 _aVIII, 341 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v3635
505 0 _aObject Recognition via Local Patch Labelling -- Multi Channel Sequence Processing -- Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis -- Extensions of the Informative Vector Machine -- Efficient Communication by Breathing -- Guiding Local Regression Using Visualisation -- Transformations of Gaussian Process Priors -- Kernel Based Learning Methods: Regularization Networks and RBF Networks -- Redundant Bit Vectors for Quickly Searching High-Dimensional Regions -- Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis -- Ensemble Algorithms for Feature Selection -- Can Gaussian Process Regression Be Made Robust Against Model Mismatch? -- Understanding Gaussian Process Regression Using the Equivalent Kernel -- Integrating Binding Site Predictions Using Non-linear Classification Methods -- Support Vector Machine to Synthesise Kernels -- Appropriate Kernel Functions for Support Vector Machine Learning with Sequences of Symbolic Data -- Variational Bayes Estimation of Mixing Coefficients -- A Comparison of Condition Numbers for the Full Rank Least Squares Problem -- SVM Based Learning System for Information Extraction.
650 0 _aArtificial intelligence.
_93407
650 0 _aMachine theory.
_9147900
650 0 _aDatabase management.
_93157
650 0 _aInformation storage and retrieval systems.
_922213
650 0 _aComputer vision.
_9147901
650 0 _aPattern recognition systems.
_93953
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aFormal Languages and Automata Theory.
_9147902
650 2 4 _aDatabase Management.
_93157
650 2 4 _aInformation Storage and Retrieval.
_923927
650 2 4 _aComputer Vision.
_9147903
650 2 4 _aAutomated Pattern Recognition.
_931568
700 1 _aWinkler, Joab.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9147904
700 1 _aLawrence, Neil.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9147905
700 1 _aNiranjan, Mahesan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9147906
710 2 _aSpringerLink (Online service)
_9147907
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783540290735
776 0 8 _iPrinted edition:
_z9783540816072
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v3635
_9147908
856 4 0 _uhttps://doi.org/10.1007/11559887
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c93982
_d93982